Page 528 - Electromagnetics
P. 528

Differential operations

                                                           ˆ
                                                                  ˆ
                                                 dl = ˆ r dr + θrdθ + φr sin θ dφ             (D.102)
                                                           2
                                                     dV = r sin θ dr dθ dφ                    (D.103)
                                                            2
                                                      dS r = r sin θ dθ dφ                    (D.104)
                                                      dS θ = r sin θ dr dφ                    (D.105)
                                                      dS φ = rdrdθ                            (D.106)

                                                      ∂ f    1 ∂ f     1  ∂ f
                                                                   ˆ
                                                ∇ f = ˆ r  + θ ˆ  + φ                         (D.107)
                                                      ∂r     r ∂θ    r sin θ ∂φ
                                                            1   ∂              1
                                              1 ∂ 	  2  
                         ∂ F φ
                                       ∇· F =      r F r +         (sin θ F θ ) +             (D.108)
                                               2
                                              r ∂r        r sin θ ∂θ         r sin θ ∂φ
                                                                   ˆ       ˆ

                                                          1     ˆ r rθ r sin θφ
                                                                  ∂
                                                                        ∂

                                               ∇× F =           ∂                             (D.109)
                                                                ∂r
                                                        2
                                                       r sin θ    ∂θ    ∂φ

                                                               F r rF θ r sin θ F φ
                                                                                   2
                                       1 ∂     ∂ f      1    ∂      ∂ f      1    ∂ f
                                  2           2
                                ∇ f =        r     +            sin θ   +                     (D.110)
                                                                               2
                                        2
                                                       2
                                       r ∂r    ∂r     r sin θ ∂θ    ∂θ    r sin θ ∂φ 2
                                                                           2

                                                    2       cos θ     1 ∂ F φ  ∂ F θ
                                     2        2
                                    ∇ F = ˆ r ∇ F r −  F r +    F θ +        +       +
                                                   r 2      sin θ    sin θ ∂φ   ∂θ

                                          ˆ   2     1    1        ∂ F r  cos θ ∂ F φ
                                        + θ ∇ F θ −         F θ − 2   + 2           +
                                                          2
                                                                           2
                                                    r 2  sin θ     ∂θ    sin θ ∂φ

                                          ˆ   2     1     1         1 ∂ F r   cos θ ∂ F θ
                                        + φ ∇ F φ −       2  F φ − 2      − 2   2             (D.111)
                                                    r 2  sin θ     sin θ ∂φ   sin θ ∂φ
                        Separation of the Helmholtz equation

                                     1 ∂    2  ∂ψ(r,θ,φ)     1   ∂       ∂ψ(r,θ,φ)
                                           r            +            sin θ          +
                                      2
                                                            2
                                     r ∂r        ∂r        r sin θ ∂θ       ∂θ
                                                             2
                                                        1   ∂ ψ(r,θ,φ)    2
                                                   +     2        2    + k ψ(r,θ,φ) = 0       (D.112)
                                                      2
                                                     r sin θ   ∂φ
                                                  ψ(r,θ,φ) = R(r) (θ) (φ)                     (D.113)
                                                          η = cos θ                           (D.114)
                                               1   d     2  dR(r)     2 2
                                                      r        + k r = n(n + 1)               (D.115)
                                              R(r) dr     dr
                                   2
                                 d  (η)      d (η)               µ 2
                                2
                          (1 − η )      − 2η       + n(n + 1) −        (η) = 0,  −1 ≤ η ≤ 1   (D.116)
                                   dη 2       dη               1 − η 2
                       © 2001 by CRC Press LLC
   523   524   525   526   527   528   529   530   531   532   533