Page 527 - Electromagnetics
P. 527

x = r sin θ cos φ                       (D.82)
                                                       y = r sin θ sin φ                       (D.83)
                                                        z = r cos θ                            (D.84)



                                                                 2
                                                            2
                                                      r =  x + y + z 2                         (D.85)

                                                                 2
                                                                x + y 2
                                                            −1
                                                      θ = tan                                  (D.86)
                                                                  z
                                                               y
                                                            −1
                                                      φ = tan                                  (D.87)
                                                              x
                        Vector algebra
                                              ˆ r = ˆ x sin θ cos φ + ˆ y sin θ sin φ + ˆ z cos θ  (D.88)
                                              ˆ
                                              θ = ˆ x cos θ cos φ + ˆ y cos θ sin φ − ˆ z sin θ  (D.89)
                                              ˆ
                                             φ =−ˆ x sin φ + ˆ y cos φ                         (D.90)
                                                              ˆ     ˆ
                                                    A = ˆ rA r + θA θ + φA φ                   (D.91)


                                                 A · B = A r B r + A θ B θ + A φ B φ           (D.92)


                                                                  ˆ

                                                                ˆ r θ φ
                                                                     ˆ

                                                                                               (D.93)
                                                     A × B = A r A θ A φ


                                                              B r B θ B φ
                        Dyadic representation
                                                               ˆ      ˆ
                                                 ¯ a = ˆ ra rr ˆ r + ˆ ra rθ θ + ˆ ra rφ φ +
                                                     ˆ      ˆ   ˆ   ˆ   ˆ
                                                   + θa θr ˆ r + θa θθ θ + θa θφ φ +
                                                             ˆ
                                                                    ˆ
                                                     ˆ
                                                                 ˆ
                                                                         ˆ
                                                   + φa φr ˆ r + φa φθ θ + φa φφ φ             (D.94)
                                                                              ˆ
                                                                        ˆ
                                                            ˆ
                                                      ˆ


                                             ¯ a = ˆ ra + θa + φa = a r ˆ r + a θ θ + a φ φ    (D.95)
                                                  r
                                                        θ
                                                              φ
                                                                 ˆ
                                                                       ˆ

                                                    a = a rr ˆ r + a rθ θ + a rφ φ             (D.96)
                                                     r
                                                                 ˆ
                                                                       ˆ
                                                    a = a θr ˆ r + a θθ θ + a θφ φ             (D.97)

                                                     θ
                                                                        ˆ
                                                                 ˆ
                                                   a = a φr ˆ r + a φθ θ + a φφ φ              (D.98)

                                                    φ
                                                                       ˆ
                                                                 ˆ
                                                    a r = a rr ˆ r + a θr θ + a φr φ           (D.99)
                                                                       ˆ
                                                                 ˆ
                                                    a θ = a rθ ˆ r + a θθ θ + a φθ φ          (D.100)
                                                                        ˆ
                                                                 ˆ
                                                   a φ = a rφ ˆ r + a θφ θ + a φφ φ           (D.101)
                       © 2001 by CRC Press LLC
   522   523   524   525   526   527   528   529   530   531   532