Page 530 - Electromagnetics
P. 530

Appendix E



                        Properties of special functions















                        E.1   Bessel functions

                        Notation

                            z = complex number; ν, x = real numbers; n = integer
                            J ν (z) = ordinary Bessel function of the first kind
                            N ν (z) = ordinary Bessel function of the second kind
                            I ν (z) = modified Bessel function of the first kind
                            K ν (z) = modified Bessel function of the second kind
                            H ν (1)  = Hankel function of the first kind
                            H ν (2)  = Hankel function of the second kind
                            j n (z) = ordinary spherical Bessel function of the first kind
                            n n (z) = ordinary spherical Bessel function of the second kind
                             (1)
                            h (z) = spherical Hankel function of the first kind
                             n
                             (2)
                            h (z) = spherical Hankel function of the second kind
                             n
                            f (z) = df (z)/dz = derivative with respect to argument

                        Differential equations
                                             2
                                            d Z ν (z)  1 dZ ν (z)     ν 2
                                                   +         + 1 −      Z ν (z) = 0             (E.1)
                                              dz 2    z  dz         z 2

                                                             
                                                              J ν (z)
                                                             
                                                               N ν (z)
                                                             
                                                      Z ν (z) =  (1)                            (E.2)
                                                              H ν  (z)
                                                             
                                                                H  (z)
                                                                (2)
                                                                 ν
                                              cos(νπ)J ν (z) − J −ν (z)
                                      N ν (z) =                  ,  ν  = n,  | arg(z)| <π       (E.3)
                                                    sin(νπ)

                                                   H (1) (z) = J ν (z) + jN ν (z)               (E.4)
                                                    ν
                                                   H (2) (z) = J ν (z) − jN ν (z)               (E.5)
                                                    ν



                        © 2001 by CRC Press LLC
   525   526   527   528   529   530   531   532   533   534   535