Page 534 - Electromagnetics
P. 534

π  −z            3π
                                          K ν (z) ≈  e ,   | arg(z)| <                         (E.64)
                                                   2z                2
                                                  1   
   nπ
                                           j n (z) ≈  sin z −  ,  | arg(z)| <π                 (E.65)
                                                  z        2
                                                   1    
   nπ
                                          n n (z) ≈− cos z −    ,  | arg(z)| <π                (E.66)
                                                   z         2
                                                        e jz
                                                     n+1
                                          (1)
                                         h (z) ≈ (− j)     ,  −π< arg(z)< 2π                   (E.67)
                                          n
                                                         z
                                                     e − jz
                                                  n+1
                                          (2)
                                         h (z) ≈ j       ,  −2π< arg(z)<π                      (E.68)
                                          n
                                                       z
                        Recursion relationships
                                                zZ ν−1 (z) + zZ ν+1 (z) = 2νZ ν (z)            (E.69)
                                                  Z ν−1 (z) − Z ν+1 (z) = 2Z (z)               (E.70)

                                                                      ν
                                                   zZ (z) + νZ ν (z) = zZ ν−1 (z)              (E.71)

                                                     ν

                                                   zZ (z) − νZ ν (z) =−zZ ν+1 (z)              (E.72)
                                                     ν
                                                 zL ν−1 (z) − zL ν+1 (z) = 2νL ν (z)           (E.73)

                                                  L ν−1 (z) + L ν+1 (z) = 2L (z)               (E.74)
                                                                       ν

                                                    zL (z) + νL ν (z) = zL ν−1 (z)             (E.75)
                                                      ν

                                                    zL (z) − νL ν (z) = zL ν+1 (z)             (E.76)
                                                      ν
                                                  zz n−1 (z) + zz n+1 (z) = (2n + 1)z n (z)    (E.77)
                                            nz n−1 (z) − (n + 1)z n+1 (z) = (2n + 1)z (z)      (E.78)

                                                                            n
                                                zz (z) + (n + 1)z n (z) = zz n−1 (z)           (E.79)

                                                  n

                                                    −zz (z) + nz n (z) = zz n+1 (z)            (E.80)
                                                       n
                        Integral representations
                                                  1     π
                                          J n (z) =    e − jnθ+ jz sin θ  dθ                   (E.81)
                                                 2π  −π
                                                 1     π
                                          J n (z) =   cos(nθ − z sin θ) dθ                     (E.82)
                                                 π  0
                                                  1  −n     π  jz cos θ
                                          J n (z) =  j    e     cos(nθ) dθ                     (E.83)
                                                 2π     −π
                                                 1     π  z cos θ
                                          I n (z) =   e    cos(nθ) dθ                          (E.84)
                                                 π  0
                                                   ∞                             π

                                         K n (z) =   e −z cosh(t)  cosh(nt) dt,  | arg(z)| <   (E.85)
                                                  0                               2
                                                   z n     π          2n+1
                                          j n (z) =       cos(z cos θ) sin  θ dθ               (E.86)
                                                 2 n+1 n!  0
                                                 (− j) n     π  jz cos θ
                                          j n (z) =       e     P n (cos θ) sin θ dθ           (E.87)
                                                   2    0
                        © 2001 by CRC Press LLC
   529   530   531   532   533   534   535   536   537   538   539