Page 537 - Electromagnetics
P. 537

m
                            Q (cos θ) = associated Legendre function of the second kind
                             n
                                        0
                            P n (cos θ) = P (cos θ) = Legendre polynomial
                                       n
                                        0
                            Q n (cos θ) = Q (cos θ) = Legendre function of the second kind
                                        n
                        Differential equation  x = cos θ.
                                  2
                                    m
                                               m
                                d R (x)      dR (x)   	           m 2  
  m
                                    n
                                               n
                               2
                         (1 − x )       − 2x        + n(n + 1) −        R (x) = 0, −1 ≤ x ≤ 1 (E.116)
                                                                         n
                                   dx 2        dx                1 − x 2
                                                                 m
                                                                P (x)
                                                        m        n
                                                      R (x) =                                 (E.117)
                                                                 m
                                                        n       Q (x)
                                                                 n
                        Orthogonality relationships
                                                    1
                                                      m     m            2   (n + m)!
                                                     P (x)P (x) dx = δ ln                     (E.118)
                                                           n
                                                      l
                                                   −1                  2n + 1 (n − m)!
                                          π                              2   (n + m)!
                                            m        m
                                           P (cos θ)P (cos θ) sin θ dθ = δ ln                 (E.119)
                                            l       n
                                         0                             2n + 1 (n − m)!
                                                     P (x)P (x)         1 (n + m)!
                                                    1  m    k
                                                            n
                                                      n
                                                                dx = δ mk                     (E.120)
                                                       1 − x 2          m (n − m)!
                                                  −1
                                              π  m       k
                                               P (cos θ)P (cos θ)       1 (n + m)!
                                                n        n
                                                                dθ = δ mk                     (E.121)
                                            0        sin θ              m (n − m)!
                                                                         2
                                                      1
                                                      P l (x)P n (x) dx = δ ln                (E.122)
                                                    −1                 2n + 1
                                                                         2
                                            π
                                             P l (cos θ)P n (cos θ) sin θ dθ = δ ln           (E.123)
                                          0                            2n + 1
                        Specific examples
                                P 0 (x) = 1                                                   (E.124)
                                P 1 (x) = x = cos(θ)                                          (E.125)
                                        1   2       1
                                P 2 (x) =  (3x − 1) =  (3 cos 2θ + 1)                         (E.126)
                                        2           4
                                        1   3        1
                                P 3 (x) =  (5x − 3x) =  (5 cos 3θ + 3 cos θ)                  (E.127)
                                        2            8
                                        1    4     2        1
                                P 4 (x) =  (35x − 30x + 3) =  (35 cos 4θ + 20 cos 2θ + 9)     (E.128)
                                        8                  64
                                        1    5     3          1
                                P 5 (x) =  (63x − 70x + 15x) =  (63 cos 5θ + 35 cos 3θ + 30 cos θ) (E.129)
                                        8                    128
                                              1    1 + x          θ
                                      Q 0 (x) =  ln       = ln cot                            (E.130)
                                              2    1 − x          2
                                              x     1 + x                 θ
                                      Q 1 (x) =  ln       − 1 = cos θ ln cot  − 1             (E.131)
                                              2    1 − x                  2
                        © 2001 by CRC Press LLC
   532   533   534   535   536   537   538   539   540   541   542