Page 536 - Electromagnetics
P. 536

Integrals


                                                  x  ν+1 J ν (x) dx = x  ν+1  J ν+1 (x) + C   (E.104)


                                                [bZ ν (ax)Z ν−1 (bx) − aZ ν−1 (ax)Z ν (bx)]
                             Z ν (ax)Z ν (bx)xdx = x                              + C, a  = b  (E.105)
                                                               2
                                                             a − b 2
                                                       2
                                            2         x    2
                                         xZ (ax) dx =    Z (ax) − Z ν−1 (ax)Z ν+1 (ax) + C    (E.106)
                                                          ν
                                            ν
                                                      2
                                               ∞            1

                                                  J ν (ax) dx =  ,  ν > −1,  a > 0            (E.107)
                                               0            a
                        Fourier–Bessel expansion of a function
                                                ∞
                                                            ρ
                                         f (ρ) =   a m J ν p νm  ,  0 ≤ ρ ≤ a,  ν > −1        (E.108)
                                                            a
                                                m=1
                                                      2        a     
    ρ
                                            a m =              f (ρ)J ν p νm  ρ dρ            (E.109)
                                                  2
                                                 a J  2  (p νm )          a
                                                    ν+1      0
                                                ∞
                                                            ρ
                                         f (ρ) =   b m J ν p    ,  0 ≤ ρ ≤ a,  ν > −1         (E.110)
                                                          νm
                                                m=1         a
                                                     2            a        p   νm
                                        b m =  
                   f (ρ)J ν  ρ ρ dρ           (E.111)
                                                        2
                                             a 2  1 −  ν   2 2  J (p )  0  a

                                                           νm
                                                        ν
                                                    p νm
                        Series of Bessel functions
                                                         ∞

                                                             k
                                               e  jz cos φ  =  j J k (z)e jkφ                 (E.112)
                                                       k=−∞
                                                                ∞
                                                                    k
                                                jz cos φ
                                               e     = J 0 (z) + 2  j J k (z) cos φ           (E.113)
                                                                k=1
                                                         ∞
                                                                k
                                                 sin z = 2  (−1) J 2k+1 (z)                   (E.114)
                                                         k=0
                                                                ∞
                                                                      k
                                                 cos z = J 0 (z) + 2  (−1) J 2k (z)           (E.115)
                                                                k=1
                        E.2   Legendre functions

                        Notation

                            x, y,θ = real numbers; l, m, n = integers;
                             m
                            P (cos θ) = associated Legendre function of the first kind
                             n


                        © 2001 by CRC Press LLC
   531   532   533   534   535   536   537   538   539   540   541