Page 539 - Electromagnetics
P. 539

n  1
                                                               +        nπ
                                                             2   2
                                                  P n (0) = √    n    cos                     (E.155)
                                                           π    + 1      2
                                                               2
                                                               (n − m)!  m
                                                              m
                                                  −m
                                                 P  (x) = (−1)         P (x)                  (E.156)
                                                  n                     n
                                                               (n + m)!
                        Power series
                                              n       k

                                                  (−1) (n + k)!       k       n      k
                                      P n (x) =            2 k+1  (1 − x) + (−1) (1 + x)      (E.157)
                                                 (n − k)!(k!) 2
                                              k=0
                        Recursion relationships
                                                 m
                                                                                  m
                                      (n + 1 − m)R n+1 (x) + (n + m)R m  (x) = (2n + 1)xR (x)  (E.158)
                                                                 n−1
                                                                                  n
                                            2
                                                               m
                                               m
                                       (1 − x )R (x) = (n + 1)xR (x) − (n − m + 1)R m  (x)    (E.159)
                                               n              n                 n+1
                                            (2n + 1)xR n (x) = (n + 1)R n+1 (x) + nR n−1 (x)  (E.160)
                                               2

                                             (x − 1)R (x) = (n + 1)[R n+1 (x) − xR n (x)]     (E.161)
                                                      n
                                          R    (x) − R     (x) = (2n + 1)R n (x)              (E.162)
                                           n+1      n−1
                        Integral representations

                                                      √
                                                       2   π  sin n +  1 2     u
                                           P n (cos θ) =    √            du                   (E.163)
                                                      π   0   cos θ − cos u
                                                      1     π     2   1/2      n
                                              P n (x) =     x + (x − 1)  cos θ  dθ            (E.164)
                                                      π  0
                        Addition formula

                                    P n (cos γ) = P n (cos θ)P n (cos θ ) +
                                                 n
                                                   (n − m)!  m       m


                                            + 2            P (cos θ)P (cos θ ) cos m(φ − φ ),  (E.165)
                                                            n
                                                                    n
                                                   (n + m)!
                                                m=1



                                            cos γ = cos θ cos θ + sin θ sin θ cos(φ − φ )     (E.166)
                        Summations
                                                                      ∞
                                          1              1                r  n <
                                                                    =        P n (cos γ)      (E.167)
                                              =                           n+1
                                                   2    2

                                        |r − r |  r + r − 2rr cos γ   n=0  r >


                                            cos γ = cos θ cos θ + sin θ sin θ cos(φ − φ )     (E.168)




                                             r < = min |r|, |r | ,  r > = max |r|, |r |       (E.169)
                        © 2001 by CRC Press LLC
   534   535   536   537   538   539   540   541   542