Page 540 - Electromagnetics
P. 540

Integrals
                                                             P n+1 (x) − P n−1 (x)

                                                   P n (x) dx =              + C              (E.170)
                                                                  2n + 1
                                                1
                                                 m
                                                x P n (x) dx = 0,  m < n                      (E.171)
                                              −1
                                                1            2 n+1 (n!) 2
                                                  n
                                                x P n (x) dx =                                (E.172)
                                              −1             (2n + 1)!
                                               1               2 2n+1 (2k)!(k + n)!
                                                2k
                                               x P 2n (x) dx =                                (E.173)
                                             −1              (2k + 2n + 1)!(k − n)!
                                                               √
                                               1
                                                  P n (x)     2 2

                                                 √     dx =                                   (E.174)
                                              −1  1 − x      2n + 1
                                              1                     1      2
                                                 P 2n (x)       n +  2

                                                √      dx =                                   (E.175)
                                             −1   1 − x 2        n!
                                               1
                                                                  (2n)!   1
                                                P 2n+1 (x) dx = (−1) n                        (E.176)
                                                                         n
                                              0                   2n + 2 (2 n!) 2
                        Fourier–Legendre series expansion of a function
                                                       ∞

                                                f (x) =  a n P n (x),  −1 ≤ x ≤ 1             (E.177)
                                                      n=0
                                                      2n + 1     1
                                                 a n =          f (x)P n (x) dx               (E.178)
                                                        2    −1




                        E.3   Spherical harmonics
                        Notation

                            θ, φ = real numbers; m, n = integers
                            Y nm (θ, φ) = spherical harmonic function


                        Differential equation
                                                              2
                                  1  ∂       ∂Y(θ, φ)     1  ∂ Y(θ, φ)   1
                                         sin θ        +               +   λY(θ, φ) = 0        (E.179)
                                                           2
                                 sin θ ∂θ      ∂θ       sin θ   ∂φ 2    a 2
                                                             2
                                                        λ = a n(n + 1)                        (E.180)



                                                        2n + 1 (n − m)!  m
                                           Y nm (θ, φ) =             P (cos θ)e  jmθ          (E.181)
                                                                      n
                                                         4π   (n + m)!



                        © 2001 by CRC Press LLC
   535   536   537   538   539   540   541   542