Page 203 -
P. 203

r
                                                          0 0 =)
                                                      0 = (,   0ê  +  0ê                    (7.2)
                                                                 1    2
                                        r  r   r
                                        uv+  =  w = ( u +  v u +,  v )  = ( u +  v ê +)  ( u +  v ê)  (7.3)
                                                    1  1  2   2    1   1  1  2   2  2
                                                  r
                                                 ku = ( ku ku =,  )  ( ku ê +)  ( ku ê)     (7.4)
                                                       1   2     1  1    2  2


                             Preparatory Exercise

                             Pb. 7.1 Using the above definitions and properties, prove the following
                             identities:

                                                     r  r  r  r
                                                            +
                                                      +
                                                    uv =   v u
                                                     r  r   r   r  r  r
                                                       +
                                                    ( uv +)  w =  u + ( v +  w)
                                                     r  r  r  r  r
                                                    u +=+     u =  u
                                                       0
                                                           0
                                                     r    r  r
                                                    u +−(  u =)  0
                                                       r     r
                                                    klu =()  ( kl u )
                                                      r  r    r   r
                                                               +
                                                    ku v =(  + )  ku kv
                                                         r    r  r
                                                      +
                                                               +
                                                    ( kl u =)  ku lu
                              The norm of a vector is the length of this vector. Using the Pythagorean the-
                             orem, its square is:

                                                         r 2
                                                         u =  u +  u 2                      (7.5)
                                                               2
                                                               1   2
                                                             r
                             and therefore the unit vector in the  u   direction, denoted by ê , is given by:
                                                                                  u
                                                             1
                                                     ê =         (,                         (7.6)
                                                                  uu )
                                                      u            1  2
                                                           u +  u 2
                                                            2
                                                            1   2
                             All of the above can be generalized to 3-D, or for that matter to n-dimensions.
                             For example:
                                                          1
                                                ê =               (,      u ,  )            (7.7)
                                                                  uu …,
                                                u                  1  2    n
                                                     u + u +…  u 2
                                                          2
                                                      2
                                                      1   2     n
                             © 2001 by CRC Press LLC
   198   199   200   201   202   203   204   205   206   207   208