Page 257 -
P. 257

n=0:p;
                                x=(2*pi/p)*n;
                                a=cos((2*pi/p)*n'*k);
                                c=((-1).^k)./(k.^2+1);
                                y=a*c';
                                plot(x,y)
                                axis([0 2*pi -1 1.2])

                             Draw in your notebook the approximate shape of the resulting curve for dif-
                             ferent values of M.




                             In-Class Exercises
                             Pb. 8.8 For different values of the cutoff, plot the resulting curves for the
                             functions given by the following Fourier series:

                                                        ∞
                                              yx() =  8 2 ∑    1     cos((  k 2 − 1) x)
                                               1    π        k 2 (   − 1) 
                                                                 2
                                                        =
                                                       k 1
                                                       ∞    (−  k 1−  
                                              yx() =  4   ∑  1)    cos((  k 2 −  1) x)
                                               2    π       k 2 (   − 1)
                                                      k 1=
                                                    2  ∞    1
                                              yx() =  ∑         sin((  k 2 −  1) x)
                                               3    π      k 2 (  −  1)
                                                      k 1=
                             Pb. 8.9 The purpose of this problem is to explore the Gibbs phenomenon.
                             This phenomenon occurs as a result of truncating the Fourier series of a dis-
                             continuous function. Examine, for example, this phenomenon in detail for
                             the function y (x) given in Pb. 8.8.
                                         3
                              The function under consideration is given analytically by:

                                                        05.   for  0 < x < π
                                                 yx() = 
                                                  3     −      for π < x <  2π
                                                         05.

                                a. Find the value where the truncated Fourier series overshoots the
                                   value of 0.5. (Answer: The limiting value of this first maximum is
                                   0.58949).
                                b. Find the limiting value of the first local minimum. (Answer: The
                                   limiting value of this first minimum is 0.45142).



                             © 2001 by CRC Press LLC
   252   253   254   255   256   257   258   259   260   261   262