Page 200 - Elements of Chemical Reaction Engineering 3rd Edition
P. 200

1 72                                  Isothermal Reactor Design   Chap. 4

                             Parameter evitluation:
                             Recall that  g,  = 1 for metric units.


                                           =          G( 1 - 0.4)
                                             l(0.032 kg/dm3)(0.02 dm)(0.4)3
                                                                                     (E4-8.11)
                                              150(1 -0.4)(1.5  X  10-6kg/dm-s)+
                                                        0.02 dm
                                Po = t(98.87 s-')G  + (25,630 dm2kg)G2] X ( 0.01 k;y$s2)  1   034-8.12)




                              1                                                  I
                             The last term in, brackets converts (kg/dmZ. s) to (kPa/dm). Recalling other param-
                             eters, m  = 44 kg/s, L = 27 dm, R = 30 dm, and  peat  = 2.6 kg/dm3.
                                 Table E4-8.1 shows the POLYMATH input used to solve the above equations.
                             The MATLAB program is given as a living example problem on the CD-ROM.

                                               TABLE E4-8.1.  POLYMATH PROGRAM
                                        Equations                                Initial  Values

                              d(X) /u(t)=-ra*Ac/Fao                                   0
                              d(y) /d(z)--beta/Po/Y*(l+X)                             1
                              Fao=440
                              P0=2000
                              CaO=O ,32
                              R-30
                              phi=0.4
                              kprime=O .02
                              L=27
                              rhoca t=2.6
                              m=44
                              Ca=CaO*(  1-X)  *y/( 1+X)
                              Ac=3.1416*( R"2-(  24) -2)
                              V=3,1416*( z*R-2-1/3Y  (2-L)  *3-1/3*LA3)
                              G=m/Ac
                              ra=-kprirnerCa*rhoca  tf ( 1-phi)
                              beta=(98.87tGt2563016^2) 10.01
                              W=rhocatr ( 5-phi) fV
                              zo  =  0,   'f  =  54


                                 For the spherical reactor, the conversion and the pressure at the exit are
              A comparison                        X  = 0.81  P = 1980 kPa
            between reactors
                             If  similar calculations are performed for the tubular packed-bed reactor (PBR), one
                             finds that for the same catalyst weight the conversion and pressure at the exit are
                                                   X = 0.71  P = 308 kPa
                             Figure E4-8.2 shows how  conversion, X, and dimensionIess pressure, y, vary with
                             catalyst weight in each reactor. Here X, and yI represent the tubular reactor and X,
   195   196   197   198   199   200   201   202   203   204   205