Page 157 - Elements of Distribution Theory
P. 157

P1: JZP
            052184472Xc05  CUNY148/Severini  May 24, 2005  17:53





                                                5.3 Exponential Family Models                143

                        Theorem 5.3. Let Y denote a random variable with model function of the form
                                                    T
                                             exp{c(θ) T (y) − A(θ)}h(y), y ∈ Y,
                        where θ ∈  . Then the conditional distribution of Y given T (Y) does not depend on θ.

                        Proof. Let η = c(θ), H denote the natural parameter space of the model, and
                                               H 0 ={η ∈ H: η = c(θ),θ ∈  }.

                        Then the model function for this model can be written
                                                   T
                                              exp{η T (y) − k(η)}h(y), y ∈ Y,
                        where η ∈ H 0 . Hence, it suffices to show that the conditional distribution of Y given T (Y),
                        based on this model, with the parameter space enlarged to H, does not depend on η.
                          We prove this result by showing that for any bounded, real-valued function g on Y,
                        E[g(Y)|T ; η] does not depend on η.
                          Fix η 0 ∈ H. The idea of the proof is that the random variable
                                                    Z = E[g(Y)|T ; η 0 ]

                        satisfies
                                               E[Zh(T ); η] = E[g(Y)h(T ); η]
                        for any η ∈ H, for all bounded functions h of T . Hence, by Theorem 2.6,

                                                    Z = E[g(Y)|T ; η].
                        That is, for all η 0 ,η ∈ H,
                                               E[g(Y)|T ; η] = E[g(Y)|T ; η 0 ],

                        which proves the result.
                          Wenowconsiderthedetailsoftheargument.Leth denoteabounded,real-valuedfunction
                        on the range of T . Then, since Z and g(Y) are bounded,
                                        E[|Zh(T )|; η] < ∞ and E[|g(Y)h(T )|; η] < ∞;

                        by Lemma 5.2,
                                                                               T
                                  E[Zh(T ); η] = exp{k(η) − k(η 0 )}E[Zh(T )exp{(η − η 0 ) T }; η 0 ]
                        and

                                                                                 T
                               E[g(Y)h(T ); η] = exp{k(η) − k(η 0 )}E[g(Y)h(T )exp{(η − η 0 ) T }; η 0 ].
                          Let
                                                                     T
                                               h 0 (T ) = h(T )exp{(η − η 0 ) T }.
                        Note that
                                      E[|h 0 (T )|; η 0 ] = exp{k(η 0 ) − k(η)}E[|h(T )|; η] < ∞.

                        It follows that
                                              E[Zh 0 (T ); η 0 ] = E[g(Y)h 0 (T ); η 0 ]
   152   153   154   155   156   157   158   159   160   161   162