Page 158 - Elements of Distribution Theory
P. 158

P1: JZP
            052184472Xc05  CUNY148/Severini  May 24, 2005  17:53





                            144                   Parametric Families of Distributions

                            so that

                                                   E[Zh(T ); η] = E[g(Y)h(T ); η]
                            for all bounded h. Hence, by Theorem 2.6,

                                                 Z ≡ E[g(Y)|T ; η 0 ] = E[g(Y)|T ; η],
                            proving the result.


                            Theorem 5.4. Let Y denote a random variable with model function of the form
                                                       T
                                                exp{c(θ) T (y) − A(η)}h(y), y ∈ Y,
                                                   m
                            where θ ∈   and c :   → R . Let
                                                  H 0 ={η ∈ H: η = c(θ),θ ∈  },
                            where H denotes the natural parameter space of the exponential family, and let Z denote
                            areal-valued function on Y.
                               (i) If Z and T (Y) are independent, then the distribution of Z does not depend on θ ∈  .
                                                              m
                              (ii) If H 0 contains an open subset of R and the distribution of Z does not depend on
                                  θ ∈  , then Z and T (Y) are independent.


                            Proof. We begin by reparameterizing the model in terms of the natural parameter η = c(θ)
                            so that the model function can be written
                                                      T
                                                  exp{η T (y) − k(η)}h(y), y ∈ Y,
                            with parameter space H 0 .
                              Suppose that Z and T (Y) are independent. Define
                                              ϕ(t; η) = E[exp(it Z); η], t ∈ R,η ∈ H.

                            Then, by Lemma 5.2, for any η 0 ∈ H
                                                                         T
                               ϕ(t; η) = exp{k(η 0 ) − k(η)}E[exp(it Z)exp{(η − η 0 ) T (Y)}; η 0 ], t ∈ R,η ∈ H.
                            Since Z and T (Y) are independent,
                                                                           T
                            ϕ(t; η) = exp{k(η 0 ) − k(η)}E[exp(it Z); η 0 ]E[exp{(η − η 0 ) T (Y)}; η 0 ], t ∈ R,η ∈ H.
                            Since
                                                         T
                                            E[exp{(η − η 0 ) T (Y)}; η 0 ] = exp{k(η) − k(η 0 )}
                            and E[exp(it Z); η 0 ] = ϕ(t; η 0 ), it follows that, for all η, η 0 ∈ H,

                                                     ϕ(t; η) = ϕ(t; η 0 ), t ∈ R
                            so that the distribution of Z does not depend on η ∈ H and, hence, it does not depend on
                            η ∈ H 0 . This proves (i).
                              Now suppose that the distribution of Z does not depend on η ∈ H 0 and that there exists
                                                                          m
                            a subset of H 0 , H 1 , such that H 1 is an open subset of R . Fix η 0 ∈ H 1 and let g denote
   153   154   155   156   157   158   159   160   161   162   163