Page 159 - Elements of Distribution Theory
P. 159

P1: JZP
            052184472Xc05  CUNY148/Severini  May 24, 2005  17:53





                                                5.3 Exponential Family Models                145

                        a bounded function on the range of Z; then there exists a δ 1 > 0 such that exp[tg(Z)] is
                        bounded for |t| <δ 1 . Hence, by Lemma 5.2, for any η ∈ H,
                                                                                 T
                             E{exp[tg(Z)]; η}= exp{k(η 0 ) − k(η)}E[exp[tg(Z)] exp{(η − η 0 ) T (Y)}; η 0 ].
                        Using the fact that
                                                    T
                                        E[exp{(η − η 0 ) T (Y)}; η 0 ] = exp{k(η) − k(η 0 )},
                        it follows that, for all η ∈ H and all |t| <δ 1 ,
                                                                                   T
                                              T
                          E{exp[tg(Z) + (η − η 0 ) T (Y)]; η 0 }= E{exp[tg(Z)]; η}E[exp{(η − η 0 ) T (Y)}; η 0 ].
                          For δ> 0, let

                                               H(δ) ={η ∈ H: ||η − η 0 || <δ}
                                                                                   m
                        and let δ 2 > 0be such that H(δ 2 ) ⊂ H 1 ; since H 1 is an open subset of R and η 0 ∈ H 1 ,
                        such a δ 2 must exist. Then, since the distribution of g(Z) does not depend on η for η ∈ H 0 ,
                        for η ∈ H(δ 2 ) and |t| <δ 1 ,
                                            E{exp[tg(Z)]; η}= E{exp[tg(Z)]; η 0 }.

                        It follows that, for all η ∈ H(δ 2 ) and all |t| <δ 1 ,
                                                                                    T
                                             T
                          E{exp[tg(Z) + (η − η 0 ) T (Y)]; η 0 }= E{exp[tg(Z)]; η 0 }E[exp{(η − η 0 ) T (Y)}; η 0 ].
                          That is, the joint moment-generating function of g(Z) and T (Y) can be factored into the
                        product of the two marginal moment-generating functions. Hence, by Corollary 4.2 g(Z)
                        and T (Y) are independent and by part (ii) of Theorem 2.1, Z and T (Y) are independent,
                        proving part (ii) of the theorem.

                        Example 5.14 (Bernoulli random variables). Let Y = (Y 1 ,..., Y n ) where Y 1 ,..., Y n are
                        independent random variables such that
                                     Pr(Y j = 1; θ) = 1 − Pr(Y j = 0; θ) = θ,  j = 0,..., n,

                        where 0 <θ < 1. Then, for all y 1 ,..., y n in the set {0, 1},
                                                                n            n
                                       Pr{Y = (y 1 ,..., y n ); θ}= θ  j=1 y j  (1 − θ) n−  j=1 y j  .
                        It follows that the model function of Y can be written

                                                           n
                                                     θ
                                          exp log            y j + n log(1 − θ) ,
                                                   1 − θ
                                                          j=1
                        and, hence, this is a one-parameter exponential family of distributions, with natural param-
                                                          n
                        eter η = log θ − log(1 − θ) and T (y) =  y j .
                                                           j=1
                          We have seen that the distribution of T (Y)isa binomial distribution with parameters n
                        and θ. Hence,
                                                                    n            n
                                                                 θ  j=1 y j  (1 − θ) n−  j=1 y j
                                   Pr{Y = (y 1 ,..., y n )|T (Y) = t; θ}=           ,
                                                                     n  t     n−t

                                                                     t  θ (1 − θ)
   154   155   156   157   158   159   160   161   162   163   164