Page 193 - Elements of Distribution Theory
P. 193

P1: JZP
            052184472Xc06  CUNY148/Severini  May 24, 2005  2:41





                                                6.3 Moving Average Processes                 179

                        Similarly, there exists an N 2 such that
                                                −(n+1)
                                                      2
                                                     α < /2, n, m > N 2 .
                                                      j
                                                j=−m
                        Hence, given  > 0, there exists an N such that
                                                          2
                                              E[(X nt − X mt ) ] < , n, m > N.
                        That is, for each t = 0, 1,..., X nt , n = 1, 2,..., is Cauchy in mean-square. The result
                        now follows from Theorem 6.4.

                          The autocovariance function of a moving average process is given in the following
                        theorem.


                        Theorem 6.6. Let {X t : t ∈ Z} be a moving average process of the form
                                                     ∞

                                               X t =    α j   t− j , t = 0, 1,...
                                                   j=−∞
                        where ...,  −1 ,  0 ,  1 ,... is a sequence of independent random variables such that E(  j ) =
                        0 and Var(  j ) = 1,j = ..., −1, 0, 1,..., and
                                                       ∞
                                                            2
                                                           α < ∞.
                                                            j
                                                      j=−∞
                        Then {X t : t ∈ Z} is a second-order stationary process with mean 0 and autocovariance
                        function
                                                  ∞

                                          R(h) =     α j α j+h , h = 0, ±1, ±2,....
                                                 j=−∞
                        If ...,  −1 ,  0 ,  0 ,... are identically distributed, then {X t : t ∈ Z} is stationary.

                        Proof. Fix h = 0, 1,... and define Y t = X t+h , t = 0, 1,.... Then
                                                  ∞              ∞

                                            Y t =    α j   t+h− j =  α j+h   t− j .
                                                 j=−∞          j=−∞
                        Fix t and define
                                                           n

                                                     X nt =   α j   t− j
                                                          j=−n
                        and
                                                          n

                                                   Y nt =    α j+h   t− j .
                                                         j=−n
                        Then
                                                          n

                                              X nt − Y nt =  (α j − α j+h )  t− j ;
                                                         j=−n
   188   189   190   191   192   193   194   195   196   197   198