Page 191 - Elements of Distribution Theory
P. 191

P1: JZP
            052184472Xc06  CUNY148/Severini  May 24, 2005  2:41





                                                6.3 Moving Average Processes                 177

                        It follows that
                                                                          1
                                                       
                                                                       
 2  2
                                                          m
                                                  1
                                                2
                                            E T  2  = E               |  
                                               m             |Y n j +1 − Y n j
                                                          j=1
                                                      m                 1
                                                                     2

                                                   ≤    E |Y n j +1 − Y n j |  2
                                                     j=1
                                                      m
                                                         1
                                                   ≤       ≤ 1.
                                                        2 j
                                                     j=1
                        Since, by Fatou’s lemma,
                                                      2
                                                                   2
                                                   E(T ) ≤ lim inf E(T ),
                                                                  m
                                                           m→∞
                                       2
                        it follows that E(T ) ≤ 1 and, hence, that Pr(T < ∞) = 1. This implies that
                                                      m


                                                         Y n j +1 − Y n j
                                                     j=1
                        converges absolutely with probability 1.
                          Hence, the limit of
                                                        m


                                                     +
                                                  Y n 1    Y n j +1 − Y n j
                                                        j=1
                        as m →∞ exists with probability 1 so that we may define a random variable
                                                          ∞


                                                       +               .
                                                Y = Y n 1    Y n j+1  − Y n j
                                                         j=1
                        Note that
                                                          with probability 1.
                                              Y = lim Y n j
                                                   j→∞
                                           2
                          Consider E[(Y n − Y) ]. Since Y n j  → Y as j →∞,
                                                                 − Y n )
                                                  Y − Y n = lim (Y n j
                                                          j→∞
                        and, by Fatou’s lemma,

                                           2                   2                     2
                                                         − Y n   ≤ lim inf E   − Y n  .
                                  E[(Y n − Y) ] = E lim Y n j               Y n j
                                                  j→∞               j→∞
                        Fix  > 0. Since Y 0 , Y 1 ,... is Cauchy in mean square, for sufficiently large n, j,

                                                                2
                                                   E   Y n − Y n j  ≤  .
                        Hence, for sufficiently large n,
                                                              2
                                                     E[(Y n − Y) ] ≤  .
                        Since  > 0is arbitrary, it follows that
                                                               2
                                                   lim E[(Y n − Y) ] = 0.
                                                  n→∞
   186   187   188   189   190   191   192   193   194   195   196