Page 195 - Elements of Distribution Theory
P. 195
P1: JZP
052184472Xc06 CUNY148/Severini May 24, 2005 2:41
6.3 Moving Average Processes 181
q = 0 q = 1
x t x t
− −
− −
t t
q = 2 q = 5
x t x t
− −
− −
t t
Figure 6.2. Randomly generated moving average processes.
Example 6.7 (Moving differences of a moving average process). Let {Z t : t ∈ Z} denote
amoving average process and let
X t = Z t+1 − Z t , t = 1, 2,....
Write
∞
Z t = α j t− j
j=−∞
2
where ∞ α < ∞. Then we may write
j=−∞ j
∞ ∞ ∞
X t = α j t+1− j − α j t− j = (α j+1 − α j ) t− j .
j=−∞ j=−∞ j=−∞
Note that
∞ ∞
2 2
(α j+1 − α j ) ≤ 4 α < ∞;
j
j=−∞ j=−∞
it follows that {X t : t ∈ Z} is also a moving average process.
By Theorem 6.6, the autocovariance function of the process is given by
∞
R(h) = (α j+1 − α j )(α j+h+1 − α j+h ).
j=−∞