Page 195 - Elements of Distribution Theory
P. 195

P1: JZP
            052184472Xc06  CUNY148/Severini  May 24, 2005  2:41





                                                6.3 Moving Average Processes                 181


                                          q = 0                              q = 1





                           x t                                 x t
                              −                                   −
                              −                                   −

                                           t                                   t
                                          q = 2                              q = 5





                           x t                                 x t
                              −                                   −
                              −                                   −


                                           t                                   t
                                      Figure 6.2. Randomly generated moving average processes.

                        Example 6.7 (Moving differences of a moving average process). Let {Z t : t ∈ Z} denote
                        amoving average process and let

                                               X t = Z t+1 − Z t , t = 1, 2,....

                        Write
                                                           ∞

                                                     Z t =    α j   t− j
                                                         j=−∞
                                     2
                        where    ∞  α < ∞. Then we may write
                                j=−∞  j
                                         ∞              ∞           ∞

                                   X t =     α j   t+1− j −  α j   t− j =  (α j+1 − α j )  t− j .
                                        j=−∞          j=−∞         j=−∞
                        Note that
                                              ∞                  ∞
                                                          2          2
                                                 (α j+1 − α j ) ≤ 4  α < ∞;
                                                                     j
                                             j=−∞              j=−∞
                        it follows that {X t : t ∈ Z} is also a moving average process.
                          By Theorem 6.6, the autocovariance function of the process is given by

                                                   ∞

                                           R(h) =     (α j+1 − α j )(α j+h+1 − α j+h ).
                                                 j=−∞
   190   191   192   193   194   195   196   197   198   199   200