Page 192 - Elements of Distribution Theory
P. 192

P1: JZP
            052184472Xc06  CUNY148/Severini  May 24, 2005  2:41





                            178                         Stochastic Processes

                                                 2
                                                            2
                                                       2
                            Furthermore, since (a + b) ≤ 2a + 2b ,
                                                                       2
                                                    2
                                                 E(Y ) = E{[Y n + (Y − Y n )] } < ∞,
                            proving the result.
                              We now consider the existence of the stochastic process defined by (6.1).

                            Theorem 6.5. Let ...,  −1 ,  0 ,  0 ,... denote independent random variables such that, for
                            each j, E(  j ) = 0 and Var(  j ) = 1 and let ...,α −1 ,α 0 ,α 1 ,... denote constants.
                              If

                                                           ∞
                                                                2

                                                               α < ∞
                                                                j
                                                          j=−∞
                            then, for each t = 0, 1,..., the limit
                                                              n

                                                          lim    α j   t− j
                                                         n→∞
                                                             j=−n
                            exists in mean square.

                            Proof. Fix t = 0, 1,.... For n = 1, 2,... define
                                                               n

                                                        X nt =    α j   t− j .
                                                              j=−n
                            For m > n,
                                                          −(n+1)        m

                                               X mt − X nt =   α j   t− j +  α j   t− j
                                                          j=−m         j=n+1
                            and
                                                               −(n+1)     m

                                                           2         2         2
                                               E[(X mt − X nt ) ] =  α +     α .
                                                                               j
                                                                      j
                                                                j=−m     j=n+1
                              Let
                                                          n
                                                             2
                                                    A n =   α , n = 1, 2,....
                                                             j
                                                         j=1
                                         2
                            Since    ∞  α < ∞, lim n→∞ A n exists. It follows that A n is a Cauchy sequence of real
                                   j=−∞  j
                            numbers: given  > 0 there exists an N 1 such that
                                                    |A n − A m | < , n, m > N 1 .
                            That is, given  > 0, there exists an N 1 such that

                                                     m
                                                          2
                                                        α < /2, n, m > N 1 .
                                                          j
                                                    j=n+1
   187   188   189   190   191   192   193   194   195   196   197