Page 210 - Elements of Distribution Theory
P. 210

P1: JZP
            052184472Xc06  CUNY148/Severini  May 24, 2005  2:41





                            196                         Stochastic Processes

                            6.5  Let {X t : t ∈ Z} denote a stationary stochastic process and, for s, t ∈ Z, let K(s, t) =
                                Cov(X s , X t ). Show that if
                                                          lim K(s, t) = K(0, 0)
                                                         s,t→∞
                                then there exists a random variable X such that
                                                                     2
                                                          lim E[(X n − X) ] = 0.
                                                         n→∞
                            6.6  Let Y, Y 0 , Y 1 ,... denote real-valued random variables such that
                                                                     2
                                                          lim E[(Y n − Y) ] = 0.
                                                         n→∞
                                Let a, a 0 , a 1 ,... and b, b 0 , b 1 ,... denote constants such that
                                                      lim a n = a  and  lim b n = b.
                                                      n→∞            n→∞
                                For n = 0, 1,..., let X n = a n Y n + b n and let X = aY + b. Does it follow that
                                                                     2
                                                         lim E[(X n − X) ] = 0?
                                                         n→∞
                            6.7  Let {X t : t ∈ Z} denote a moving average process. Define

                                                      Y t =  m   c j X t− j , t = 0, 1,...
                                                           j=0
                                for some constants c 0 , c 1 ,..., c m .Is {Y t : t ∈ Z} amoving average process?
                            6.8  Let {X t : t ∈ Z} denote a stationary stochastic process with autocovariance function R(·). The
                                autocovariance generating function of the process is defined as
                                                             ∞
                                                                     j
                                                      C(z) =    R( j)z , |z|≤ 1.
                                                            j=−∞
                                Show that the autocorrelation function of the process can be obtained by differentiating C(·).
                            6.9  Let {X t : t ∈ Z} denote a finite moving average process of the form
                                                                 q

                                                            X t =  α j   t− j
                                                                j=0
                                                                                                2
                                where   0 ,  1 ,... are uncorrelated random variables each with mean 0 and finite variance σ . Let
                                C(·) denote the autocovariance generating function of the process (see Exercise 6.7) and define
                                                              q

                                                       D(z) =   α j z  t− j , |z|≤ 1.
                                                             j=0
                                Show that
                                                             2
                                                                    −1
                                                      C(z) = σ D(z)D(z ), |z|≤ 1.
                            6.10 Prove Theorem 6.3.
                            6.11 Let R(·) denote the autocovariance function of a stationary stochastic process. Show that R(·)
                                is positive semi-definite in the sense that for all t 1 < t 2 < ... < t m , where m = 1,..., and all
                                real numbers z 1 , z 2 ,..., z m ,
                                                         m   m
                                                              R(t i − t j )z i z j ≥ 0.
                                                        i=1 j=1
   205   206   207   208   209   210   211   212   213   214   215