Page 205 - Elements of Distribution Theory
P. 205

P1: JZP
            052184472Xc06  CUNY148/Severini  May 24, 2005  2:41





                                                   6.5 Counting Processes                    191

                        Extending this argument shows that, for any m = 1, 2,...,
                                             Pr[N(s) = 1]    Pr[N(s/m) = 1]
                                                         = m              .
                                             Pr[N(s) = 0]    Pr[N(s/m) = 0]
                        Since this holds for any m,
                                           Pr[N(s) = 1]        Pr[N(s/m) = 1]
                                                      = lim m               .
                                           Pr[N(s) = 0]  m→∞   Pr[N(s/m) = 0]
                        Note that, from (6.7),
                                                  lim Pr[N(s/m) = 0] = 1
                                                  m→0
                        and, from (PP5), writing t for s/m,

                                      lim mPr[N(s/m) = 1] = s lim Pr[N(t) = 1]/t = sλ.
                                      m→∞                    t→0
                        It follows that

                                        Pr[N(s) = 1] = λPr[N(s) = 0] = sλ exp{−λs}.
                          In a similar manner, we may write


                                                   m               2             m−2
                                    Pr[N(s) = 2] =   Pr[N(s/m) = 1] Pr[N(s/m) = 0]
                                                   2
                                                 + mPr[N(s/m) = 2]Pr[N(s/m) = 0] m−1
                        for any m = 1, 2,.... Using the expressions for Pr[N(s) = 0] and Pr[N(s) = 1] derived
                        above, we have that, for any m = 1, 2,...,
                                                 2
                        Pr[N(s) = 2] = (1 − 1/m)(sλ) exp{−sλ}/2 + mPr[N(s/m) = 2] exp{−(1 − 1/m)sλ}.
                        Letting m →∞ it follows that
                                                               2
                                                            (sλ) exp{−sλ}
                                              Pr[N(s) = 2] =             .
                                                                 2!
                          The general case follows along similar lines:

                                                 m               n             m−n
                                  Pr[N(s) = n] =   Pr[N(s/m) = 1] Pr[N(s/m) = 0]  + R
                                                 n
                                               m(m − 1) ··· (m − n + 1)  n
                                             =                      (λs) exp{−λs}+ R
                                                         m n
                        where R is a finite sum, each term of which includes a factor of the form Pr[N(s/m) = j]
                        for some j ≥ 2. Letting m →∞, and using (PP5), yields the result.


                        Distribution of the interarrival times
                        Consider a Poisson process {N(t): t ≥ 0} and let T 1 denote the time until the first arrival
                        occurs. Since, for any t > 0,
                                             X 1 > t   if and only if N(t) = 0,

                        it follows that
                                        Pr(X 1 ≤ t) = 1 − Pr(N(t) = 0) = 1 − exp{−λt}.
   200   201   202   203   204   205   206   207   208   209   210