Page 204 - Elements of Distribution Theory
P. 204

P1: JZP
            052184472Xc06  CUNY148/Severini  May 24, 2005  2:41





                            190                         Stochastic Processes

                            Proof. First suppose that conditions (PP1), (PP2), and (PP3) are satisfied so that the
                            process is a Poisson process. Then, for any t ≥ 0, N(t) has a Poisson process with mean
                            λt. Hence,

                                               lim Pr[N(t) = 1]/t = lim λ exp(−λt) = λ
                                               t→0               t→0
                            and
                                                              ∞
                                                                  j j−1
                                               Pr[N(t) ≥ 2]/t =  λ t   exp(−λt)/j!
                                                              j=2
                                                                ∞
                                                                     j
                                                           ≤ λ    (λt) exp(−λt)/j!
                                                               j=1
                                                           ≤ λ[1 − exp(−λt)].
                            It follows that

                                         lim sup Pr[N(t) ≥ 2]/t ≤ lim sup λ[1 − exp(−λt)] = 0.
                                           t→0                  t→0
                            Hence, (PP5) holds. Condition (PP4) follows directly from (PP3).
                              Now assume that (PP1), (PP2), (PP4), and (PP5) hold. Note that (PP5) implies that

                                lim{Pr[N(t) = 0] − 1}/t =− lim{Pr[N(t) = 1] + Pr[N(t) ≥ 2]}/t =−λ.  (6.7)
                                t→0                     t→0
                            Using (PP2) and (PP4),

                            Pr[N(s + t) = 0] = Pr[N(s) = 0, N(s + t) − N(s) = 0] = Pr[N(t) = 0]Pr[N(s) = 0].
                            Hence,
                                    Pr[N(s + t) = 0] − Pr[N(s) = 0]          Pr[N(t) = 0] − 1
                                                                = Pr[N(s) = 0]             .
                                                 t                                 t
                            By (6.7),
                                                 d
                                                   Pr[N(s) = 0] =−λPr[N(s) = 0],
                                                 ds
                            that is,
                                                     d
                                                        log Pr[N(s) = 0] =−λ.
                                                     ds
                            Solving this differential equation yields
                                                 Pr[N(s) = 0] = exp{−λs}, s ≥ 0.

                              Now consider Pr[N(s + t) = 1]. Note that

                                 Pr[N(s + t) = 1] = Pr[N(s) = 0]Pr[N(t) = 1] + Pr[N(s) = 1]Pr[N(t) = 0].
                            Hence,
                                           Pr[N(s + t) = 1]  Pr[N(t) = 1]  Pr[N(s) = 1]
                                                         =             +            .
                                           Pr[N(s + t) = 0]  Pr[N(t) = 0]  Pr[N(s) = 0]
   199   200   201   202   203   204   205   206   207   208   209