Page 228 - Elements of Distribution Theory
P. 228

P1: JZX
            052184472Xc07  CUNY148/Severini  May 24, 2005  3:59





                            214             Distribution Theory for Functions of Random Variables

                            Example 7.16 (One-parameter exponential family distribution). Consider a one-
                            parameter exponential family of absolutely continuous distributions with density functions
                            of the form

                                                   exp{c(θ)y − d(θ)}h(y), y ∈ Y
                                                                        +
                            where θ ∈  , c :   → R, d :   → R, and h : Y → R .
                              Let Y 1 , Y 2 ,..., Y n denote independent, identically distributed random variables, each
                            distributed according to this distribution. Then (Y 1 ,..., Y n ) has density


                                                n                 n
                                                                                            n
                                   p(y; θ) = exp  c(θ)y j − nd(θ)   h(y j ), y = (y 1 ,..., y n ) ∈ Y .
                                                j=1              j=1
                                             n
                            It follows that S =  Y j has density
                                              j=1

                                    ···  exp{c(θ)(s − y 2 − ... − y n ) − d(θ)}h(s − y 2 −· · · − y n )
                                  Y    Y

                                            n                      n

                                     × exp     c(θ)y j − (n − 1) d(θ)  h(y j ) dy 2 ··· dy n
                                            j=2                   j=2
                                                                               n


                                   = exp{c(θ)s − nd(θ)}  ···  h(s − y 2 −· · · − y n )  h(y j ) dy 2 ··· dy n .
                                                      Y    Y                  j=2
                            Hence, the model for S is also a one-parameter exponential family model.
                            Example 7.17 (Multinomial distribution). Let X = (X 1 ,..., X m ) denote a random vector
                            with a discrete distribution with frequency function
                                                                     n

                                                                             x 1 x 2
                                                                                     x m
                                        p(x 1 ,..., x m ; θ 1 ,...,θ m ) =  θ θ ··· θ ,
                                                                             1  2    m
                                                                x 1 , x 2 ,... x m
                                                           m
                            for x j = 0, 1,..., n, j = 1,..., m,  j=1  x j = n; here θ 1 ,...,θ m are nonnegative con-
                                           m

                            stants satisfying  θ j = 1. Recall that this is a multinomial distribution with parameters
                                           j=1
                            n and (θ 1 ,...,θ m ); see Example 2.2.
                              Let S = X 1 +· · · + X m−1 . Then S has a discrete distribution with frequency function

                                                               n
                                                                              x m
                                                                      x 1 x 2
                                                p S (s) =            θ θ ··· θ ;
                                                                      1  2    m
                                                           x 1 ,..., x m
                                                       X s
                            here
                                                                      m−1


                                                                    m
                                              X s = (x 1 ,..., x m−1 ) ∈ Z :  x j = s .
                                                                       j=1
                                       m−1

                              Let η =     θ j so that θ m = 1 − η. Then
                                       j=1
                                                             n         θ 1      θ m−1
                                                                           x 1        x m−1

                                                 n−s
                                          s
                                  p S (s) = η (1 − η)                       ···
                                                        x 1 , x 2 ,..., x m  η   η
                                                    X s
                                                          n

                                                                   s       θ 1  x 1  θ m−1  x m−1
                                                 n−s
                                          s
                                       = η (1 − η)      x 1 ,...,x m            ···          .
                                                          s

                                                               x 1 ,..., x m  η       η
                                                    X s  x 1 ,...,x m
   223   224   225   226   227   228   229   230   231   232   233