Page 273 - Elements of Distribution Theory
P. 273

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                                  9.2 Some Useful Functions                  259














                           log Γ (x)















                                                             x
                                               Figure 9.1. Log-gamma function.

                        Proof. Let 0 <α < 1. Then, for x 1 > 0, x 2 > 0,

                                                             ∞            1
                                                                     x 2 1−α
                                                                x 1 α
                                   log  (αx 1 + (1 − α)x 2 ) = log  (t ) (t )  exp(−t) dt.
                                                            0             t
                        By the H¨older inequality,
                                      ∞           1                    ∞

                                         x 1 α
                                             x 2 1−α
                                 log   (t ) (t )    exp(−t) dt ≤ α log   t x 1 −1  exp(−t) dt
                                     0            t                   0

                                                   ∞

                                    + (1 − α) log    t  x 2 −1  exp(−t) dt .
                                                  0
                        It follows that
                                    log  (αx 1 + (1 − α)x 2 ) ≤ α log  (x 1 ) + (1 − α) log  (x 2 ),
                        proving the result.
                          Let
                                                       d
                                                ψ(x) =    log  (x), x > 0
                                                       dx
                        denote the logarithmic derivative of the gamma function. The function ψ inherits a recursion
                        property from the recursion property of the log-gamma function. This property is given in
                        the following theorem; the proof is left as an exercise.

                        Theorem 9.4.
                                                                1
                                               ψ(x + 1) = ψ(x) +  , x > 0
                                                                x
   268   269   270   271   272   273   274   275   276   277   278