Page 275 - Elements of Distribution Theory
P. 275

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                                  9.2 Some Useful Functions                  261

                        That is,

                                                       n−1  j
                                                          y
                                               (n, y) =      exp(−y) (n),
                                                           j!
                                                       j=0
                        proving the result.


                          For general values of x, the following result gives two series expansions for γ (x, y).

                        Theorem 9.7. For x > 0 and y > 0,

                                                    ∞      j  x+ j
                                                      (−1) y
                                           γ (x, y) =                                      (9.1)
                                                        j!  x + j
                                                   j=0
                                                           ∞
                                                                  (x)     x+ j
                                                 = exp(−y)               y  .              (9.2)
                                                               (x + j + 1)
                                                           j=0
                        Proof. Recall that, for all x,
                                                            ∞
                                                                j
                                                    exp(x) =   x /j!;
                                                            j=0
                        hence,

                                                                      ∞
                                                y                 y
                                                                             j j
                                    γ (x, y) =  t x−1  exp(−t) dt =  t x−1  (−1) t /j! dt
                                              0                 0     j=0
                                             ∞      j     y
                                                (−1)     x+ j−1
                                          =             t     dt
                                                  j!
                                             j=0      0
                                             ∞      j  x+ j
                                                (−1) y
                                          =               .
                                                  j!  x + j
                                             j=0
                        Note that the interchanging of summation and integration is justified by the fact that
                                      ∞       y          ∞      x+ j
                                         1                  1 y
                                               x+ j−1                  x
                                              t     dt =           ≤ y exp(y) < ∞
                                         j!                 j! x + j
                                      j=0   0            j=0
                        for all y, x. This proves (9.1).
                          Now consider (9.2). Using the change-of-variable u = 1 − t/y,we may write
                                           y                 1
                                                               x
                                γ (x, y) =  t x−1  exp(−t) dt =  y (1 − u) x−1  exp{−y(1 − u)} du
                                         0                 0
                                                     1
                                         x
                                      = y exp(−y)   (1 − u) x−1  exp(yu) du
                                                   0
                                                     1        ∞
                                                                    j
                                                          x−1
                                         x
                                      = y exp(−y)   (1 − u)     (yu) /j! du.
                                                   0          j=0
   270   271   272   273   274   275   276   277   278   279   280