Page 274 - Elements of Distribution Theory
P. 274

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                            260                       Approximation of Integrals

                            For n = 1, 2,...,
                                                  1    1             1
                                       ψ(x + n) =  +       +· · · +        + ψ(x), x > 0.
                                                  x   x + 1       x + n − 1

                            Incomplete gamma function
                            The limits of the integral defining the gamma function are 0 and ∞. The incomplete gamma
                            function is the function obtained by restricting the region of integration to (0, y):
                                                        y
                                             γ (x, y) =  t  x−1  exp(−t) dt, x > 0, y > 0.
                                                      0
                            Thus, considered as a function of y for fixed x, the incomplete gamma function is, aside
                            from a normalization factor, the distribution function of the standard gamma distribution
                            with index x.
                              The following theorem shows that, like the gamma function, the incomplete gamma
                            function satisfies a recursive relationship; the proof is left as an exercise.

                            Theorem 9.5. For x > 0 and y > 0,
                                                                      x
                                                γ (x + 1, y) = xγ (x, y) − y exp(−y).
                              It is sometimes convenient to consider the function
                                                      ∞

                                             (x, y) =   t  x−1  exp(−t) dt =  (x) − γ (x, y).
                                                     y
                              When x is an integer,  (x, y)/ (x), and, hence, γ (x, y)/ (x), can be expressed as a
                            finite sum.

                            Theorem 9.6. For n = 1, 2,...,
                                                          n−1
                                                  (n, y)     y  j
                                                        =       exp(−y), y > 0;
                                                   (n)        j!
                                                          j=0
                            equivalently,
                                                            n−1  j
                                               γ (n, y)        y
                                                      = 1 −       exp(−y), y > 0.
                                                 (n)           j!
                                                            j=0
                            Proof. Note that, using the change-of-variable s = t − y,
                                     ∞                         ∞

                                       t n−1  exp(−t) dt = exp(−y)  (s + y) n−1  exp(−s) ds
                                    y                         0
                                                               ∞ n−1

                                                                     n − 1  n−1− j  j
                                                    = exp(−y)              s     y exp(−s) ds
                                                              0  j=0   j
                                                      n−1
                                                                 j  n − 1
                                                    =    exp(−y)y         (n − j)
                                                                     j
                                                      j=0
                                                      n−1        j
                                                                y
                                                    =    exp(−y)  (n − 1)!.
                                                                 j!
                                                      j=0
   269   270   271   272   273   274   275   276   277   278   279