Page 479 - Elements of Chemical Reaction Engineering Ebook
P. 479

450                       Steady-State Nonisothermal Reactor Design   Chap. 8

                               2.  Energy balance. Neglecting the work done by  the stirrer, we  combine Equa-
                                  tions (8-42) and (8-50) to obtain

                                                                                      (E8-5.i)

                                  Solving  the energy balance for XEB yields

                                                 c@, ept (T - To)  [ uA( T - T,) / FAO]
                                            XEB =                                     (E8-5.2)
                                                    -[AHL(TR) + Aep (T- TR)l
                                 The cooling coil term in Equation (E8-5.2) is

                                         -_         Btu  [   40 ft2  )- 92.9Btu       (E8-5.3)
                                                                      -
                                         UA -
                                         FAb      h  ft2. OF  43.04 lb mol/h   lb mol. OF
                                 Recall that the cooling temperature is
                                                     T, = 85°F = 545 R
                                 The numerical values of  all other terms of  Equation (E8-5.2) are identical to
                                 those given in Equation (E8-4.12):
                                                   403.3(T-535)  +92.9(T-545)
                                                 =                                    (E8-5.4)
                                                                  -,
                                                       36,400 + 7(T  528)
                            We now have two equations [(E8-4.13) and (E8-5.4)] and two unknowns, X  and T.


                                        TABLE E8-5.1.  POLYMATH: CSTR WITH HEAT EXCHANGE
                                             Equations:                           Initial  Values:
                             f (X) =X-(  403.3*( T-535) t92. Q*( T-545))  /( 36400t7* (T-528))   0.367
                             f (T)=X-tau*C/( lttau*k)                                 564
                             tau=D.l22Q
                            A=16.96tlO**12
                            E=32400
                            R=1.987
                             k=Afexp( -E/( R*T))


                                        TABLE E8-5.2.  EXAMPLE 8-4 CSTR WITH BEAT EXCHANGE
                                                         Sol ut 1 on
                                            Uar iable   Value        f0
          We  can now use the               X          0.363609    -6.779~16
           glass lined reactor              T          563.729     -6.855~-16
                                            tau        0.1229
                                            A          1.696e+12
                                            E          32400
                                            R          1.987
                                            k          4.64898
   474   475   476   477   478   479   480   481   482   483   484