Page 101 - Academic Press Encyclopedia of Physical Science and Technology 3rd Analytical Chemistry
P. 101

P1: GRB Final Pages
 Encyclopedia of Physical Science and Technology  EN005M-206  June 15, 2001  20:25







              Electrochemistry                                                                            179

                 TABLE III Apparent Metal-Ligand Covalent-Bond-   The electrochemical reduction of permanganic acid
                 Formation Free Energies (−∆G BF ) for Several Man-  [HOMn VII (O) 3 ], which is traditionally represented as a
                 ganese, Iron, and Cobalt Complexes
                                                                metal-centered electron transfer to change Mn 7+  to Mn ,
                                                                                                           6+
                        Complex          −∆G BF , kcal mol −1 a  is another example of a ligand-centered process,
                 A. Manganese                                          VII                     VI
                                                                                 +
                                                                 (O) 3 Mn  –OH + H O + e −  Mn (O) 3 + 2H 2 O
                                                                                 3
                          III
                    (8Q) 2 Mn –8Q               6
                                                                                              ◦
                           III
                    (acac) 2 Mn –acac           9                − G BF = 28 kcal mol −1  (pH 1).  E , +1.45 V (106)
                          III
                    (PA) 2 Mn –PA              22
                           III
                    [(bpy) 2 Mn –bpy] 3+      >23 b             Comparison of this with the reduction of free hy-
                 B. Iron                                        droxyl radical (HO·) [Eq. (104)] provides a measure
                          III
                    (8Q) 2 Fe –8Q              15               of the HO–Mn VII (O) 3 bond energy [− G BF = (2.66 −
                                                                                    −1
                           III
                    (acac) 2 Fe –acac          23               1.45) 23.1 = 28 kcal mol ]. The other strong oxidants
                                                                                      IV
                                                                        VI
                                                                                             3+
                          III
                    (PA) 2 Fe –PA              31               [(HO) 2 Cr (O) 5 and HOCe (OH 2 ) ] that are used for
                                                                                             5
                                                                        2
                           III
                    [(bpy) 2 Fe –bpy] 3+      >29 b             aqueous redox titrations are reduced by a similar path,
                             III
                    [(Ph 3 PO) 3 Fe –OPPh 3 ] 3+  >30 b
                                                                                     VI
                                                                            VI
                                                                                                 +
                             III
                    [(MeCN) 4 Fe –OH 2 ] 3+    23                     HO–Cr (O) 2 OCr (O) 2 OH + H O + e −
                                                                                                 3
                 C. Cobalt                                                     (O) 2 Cr OCr (O) 2 OH + 2H 2 O
                                                                                         VI
                                                                                    V
                          III
                    (8Q) 2 Co –8Q              16                        +1.30 V
                           III
                    (acac) 2 Co –acac          21                       − G BF , 31 kcal mol −1  (pH 1)  (107)
                          III
                    (PA) 2 Co –PA              35                           IV
                                                                      HO–Ce (OH 2 ) 3+  + H O + e −
                                                                                         +
                           III
                    [(bpy) 2 Co –bpy] 3+      >46 b                                5     3
                                                                                 III
                                                                               Ce (OH 2 ) 3+  + H 2 O
                   a                                                                   6
                    (− G BF ) = [E  −    − E    −      ]                 +1.66 V
                              1/2[ZnL /ZnL 2 (L·)]  1/2(ML /M(·L)L 2 )
                                  3             3
                 × 23.1 kcal mol −1 .                                   − G BF , 23 kcal mol −1  (pH 1).  (108)
                   b
                    (− G BF ) = [E p,a (ZnL/ZnL + ·) − E p,a(ML/M−L + ) ] × 23.1kcal
                 mol −1 ; L = (bpy) 3 or (Ph 3 PO) 4 .
                                                                An important point in these electron-transfer reductions
                                                                is that the primary electron acceptor is the hydronium ion
                                                                  +

              e                                                 (H O), which is transformed to a hydrogen atom (H·) that
                                                                  3
                                                                reacts with HO· (either free or bound via a covalent bond
                                                                to the metal center). Thus, in the reactions of Eqs. (103),
                                                                (104), and (106)–(108), the oxidant in each is the hydro-
                                    H 2 O
                                                                         +
                                                    H    HO     nium ion (H O) and the reduction potential is determined
                                                                         3
                                                                by the H–OH bond energy (− G BF ) of the product H 2 O,
                                                       (100)
                                                                minus the metal–OH bond energy [Eqs. (106)–(108)].
                                                                                             −
                                                         −
              Hence, reductive electrochemistry converts electrons (e )  Under alkaline conditions Mn VII O is reduced via di-
                                                                                             4
              via the solution matrix at the interface to atoms and an-  rect electron addition to one of the bound oxygen atoms,
              ions. The solution outside the inner double layer never
                                                                                             VI
              is exposed to an electron. Some examples of such inner-  − OMn VII (O) 3 + e −  − OMn (O) 2 O −
              double-layer electron transfer include
                                                                                       ◦
                                                                                     E , +0.55VvsNHE.    (109)
                                          ◦
               H 2 O + e −  [H·] + HO −  E , −2.93VvsNHE
                                                       (101)    The extent of the stabilization of the oxygen atom in
                                                                      −
                                                                Mn VII O is indicated by the reduction potential for a free
                +
                                          ◦
               H O + e −   [H·] + H 2 O  E , −2.10 V   (102)          4
                3
                                                                ·O· atom,
                    2
                         III
                                  +
               (H 2 O) + Fe –OH + H O + e −
                    5             3
                                                                    [·O·] + e −  ·O −  (E ) pH 14 , +1.43 V.  (110)
                                                                                        ◦
                 pH 1  II
                     Fe (OH 2 ) 2+  + H 2 O  E , +0.71 V  (103)
                                          ◦
                 H 2 O       6
                                                                  In summary, the electron-transfer reactions for metals
                              pH 1
                      +
                                            ◦
             [HO·] + H O + e −    2H 2 O   E , +2.66 V (104)    and metal complexes are ligand centered (or solvent cen-
                      3       H 2 O
                                                                tered). In each case the potential for the oxidation of free
                            2+  III                             ligand is decreased in the presence of metal or reduced-
               − G BF (H 2 O) Fe –OH = [2.66 − 0.71] × 23.1
                            5
                                                                metal complex by an amount that is proportional to the
                                      = 45 kcal mol −1  (105)   metal-ligand bond energy (− G BF ).
   96   97   98   99   100   101   102   103   104   105   106