Page 158 - Energy from Toxic Organic Waste for Heat and Power Generation
P. 158

138   Energy from Toxic Organic Waste for Heat and Power Generation


            [13]  Hu T-L, Sheu J-B, Huang K-H. A reverse logistics cost minimization model for the
              treatment of hazardous wastes. Transp Res 2002;38(6):457–73.
            [14]  JR Conner Van Nostrand Reinhold, New York, 1990 acee.gc.ca CN Mulligan, RN
              Yong, BF Gibbs, Engineering geology, Elsevier; 2001.
            [15]  Saurabh G, Ram B. Report: biomedical waste management practices at Balrampur
              Hospital, Lucknow, India. Waste Manag Res 2006;24:584–91.
            [16]  Ramesh Babu B, Parande AK, Rajalakshmi R, Suriyakala P, Volga M. Management
              of biomedical waste in india and other countries: a review. Int J Environ Appl Sci
              2009;4(1):65–78.
            [17]  http://www.utas.edu.au/__data/assets/pdf_file/0003/193413/Briefing_Paper_2_
              What_is_hazardous_waste.pdf.
            [18]  Koo J-K, Shin H-S, Yoo H-C. Multi-objective sitting planning for a regional hazardous
              waste treatment center. Waste Manag Res 1991;9(3):205–18.
            [19]  Huang CP, Dong C, Tang Z. Advanced chemical oxidation: its present role and poten-
              tial future in hazardous waste treatment. Waste Manag 1993;13(5–7):361–77.
            [20]  Lewandowski GA, Armenante PM, Pak D. Reactor design for hazardous waste treat-
              ment using a white rot fungus. Water Res 1990;24(1):75–82.
            [21]  Moustakas K, Fatta D, Malamis S, Haralambous K, Loizidou M. Demonstration plasma
              gasification/vitrification system for effective hazardous waste management. J Hazard
              Mater 2005;123(1–3):120–6.
            [22]  Klein A, Themelis NJ. In: Energy recovery from municipal solid wastes by gasification.
              North American waste to energy conference (NAWTEC 11)11 proceedings, April
              2003.  Tampa, FL: ASME International; 2003. p. 241–52.
            [23]  Arena U. Process and technological aspects of municipal solid waste gasification. A
              review. Waste Manag 2012;32:625–39.
            [24]  Nema SK, Ganeshprasad KS. Plasma pyrolysis of medical waste. Curr Sci 2002;83(3):10.
            [25]  Jain P, Handa K, Paul DA. Studies on waste-to-energy technologies in India & a de-
              tailed study of waste-to-energy plants in Delhi. Int J Adv Res 2014;2(1):109–16.
            [26]  McKendry P. Energy production from biomass (part 3): gasification technologies. Bi-
              oresour Technol 2002;83:55–63.
            [27]  Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review.
              Bioresour Technol 2008;99(10):4044–64.
            [28]  WookNah I, WhanKang Y, Song W-K. Mechanical pretreatment of waste activated
              sludge for anaerobic digestion process. Water Res 2000;34(8):2362–8.
            [29]  Themelis NJ, Ulloa PA. Methane generation in landfills. Renew Energy 2007;32:
              1243–57.
            [30]  Bridgwater  AV. Renewable fuels and chemicals by thermal processing of biomass.
              Chem Eng J 2003;91:87–102.
            [31]  Philippe F, Culot M. Household solid waste generation and characteristics in Cape
              Haitian city, Republic of Haiti. Resour Conserv Recycl 2009;54:73–8.
            [32]  S. K. Nema and K. S. Ganeshprasad, n.d. Facilitation centre for industrial plasma tech-
              nologies, Institute for Plasma Research.
            [33]  McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour
              Technol 2002;83:37–46.
   153   154   155   156   157   158   159   160   161   162   163