Page 117 - Entrophy Analysis in Thermal Engineering Systems
P. 117

110                              Entropy Analysis in Thermal Engineering Systems


          Table 8.1 Numerical values of w rev for different fuels and fuel-air equivalence ratios.
                                                     w rev (kJ/mol)
                       Chemical  LHV     HHV                          Δw rev
          Fuel         formula   (kJ/mol) (kJ/mol) Λ min ϕ51 a  ϕ53 ϕ55  (%)

          Hydrogen     H 2       241.8   285.8   0.5 234.4 235.9 236.7 0.98
          Carbon       CO        283.0 b  283.0  0.5 259.2 263.5 265.5 2.43
            monoxide
          Methanol     CH 3 OH   676.2   764.2   1.5 705.2 712.8 716.4 1.59
          Methane      CH 4      802.5   890.6   2   814.8 824.0 828.3 1.66
          Ethanol      C 2 H 5 OH  1278  1410    3   1330  1345 1352 1.65
          Acetylene    C 2 H 2   1257    1301    2.5 1236  1250 1256 1.62
          Ethylene     C 2 H 4   1323    1411    3   1329  1344 1351 1.66
          Ethane       C 2 H 6   1429    1561    3.5 1464  1481 1488 1.64
          Propane      C 3 H 8   2043    2219    5   2102  2126 2138 1.71
          Butane       C 4 H 10  2657    2877    6.5 2740  2772 2787 1.72
          Pentane      C 5 H 12  3272    3536    8   3378  3418 3436 1.72
          Hexane       C 6 H 14  3887    4195    9.5 4017  4064 4086 1.72
          Octane       C 8 H 18  5116    5512   12.5 5294  5356 5386 1.74
          All calculations are performed at 298.15K and 1bar.
          a    Λ  :
           ϕ ¼
          b   Λ min
           CO has only one heating value.
          given fuel, Eq. (8.28) proves that the maximum thermal efficiency always
          corresponds to the minimum SEG with respect to any design or process
          parameter. This result holds for any combustion power system within the
          proper range of the equivalence ratio, ϕ.
             In the next sections, the inverse relation of the thermal efficiency and
          specific entropy generation will be demonstrated numerically for typical
          power plants.



               8.4 Gas turbine cycle
               Fig. 8.2 shows a schematic of a gas turbine power cycle that operates
          on irreversible open Brayton cycle. It consists of an air compressor, a fuel
          compressor, a combustor, and a turbine. In addition to the assumptions
          made in the beginning of Section 8.3, it will be assumed that all cycle com-
          ponents operate adiabatically (no heat leakage), the pressure drop on the path
          of the working fluid is negligible, and air enters the compressor at the ambi-
          ent temperature (T 1 ¼T 0 ) and pressure (p 1 ¼p 0 ).
             The thermodynamic model of the gas turbine cycle depicted in Fig. 8.2 is
          similar to that of the irreversible closed Brayton cycle described in
   112   113   114   115   116   117   118   119   120   121   122