Page 101 - Essentials of applied mathematics for scientists and engineers
P. 101

book   Mobk070    March 22, 2007  11:7








                                                 SOLUTIONS USING FOURIER SERIES AND INTEGRALS        91
                   solution of the form

                                                                  λx

                                                           2
                                                  B n exp(−λ t)sin                              (5.98)
                                                                   c
                   for a region of x on the interval (0, c ). Thus, for x on the interval 0 ≤ x ≤∞ we have
                                                          ∞
                                                       2
                                               B(α) =       f (ς)sin ας dς                      (5.99)
                                                       π
                                                        ς=0

                   and the solution is

                                                ∞                   ∞

                                             2
                                                        2
                                    u(x, t) =     exp(−λ t)sin(λx)   f (s )sin(λs )ds d α      (5.100)
                                             π
                                              λ=0                s =0
                   Noting that
                                        2sin α s sin α x = cos α (s − x) − cos α(s + x)        (5.101)

                   and that

                                        ∞
                                                                 1  π        b
                                                                              2
                                                2
                                          exp(−γ α)cos(γ b)dγ =       exp −                    (5.102)
                                                                 2  α        4α
                                       0
                   we have
                                           ∞
                                      1                  (s − x) 2         (s + x) 2
                           u(x, t) = √       f (s ) exp −         − exp −            ds        (5.103)
                                    2 πt                   4t                4t
                                          0
                                                           2   (s −x) 2
                   Substituting into the first of these integrals σ =  and into the second integral
                                                                4t
                                                 (s + x) 2
                                             2
                                           σ =                                                 (5.104)
                                                   4t
                                                       ∞
                                                  1                √    −σ  2
                                        u(x, t) = √        f (x + 2σ t)e   d σ
                                                   π
                                                        √
                                                    −x/2 t
                                                         ∞
                                                    1                 √   −σ  2
                                                 − √        f (−x + 2σ t)e   d σ               (5.105)
                                                     π
                                                         √
                                                       x/2 t
   96   97   98   99   100   101   102   103   104   105   106