Page 204 - Essentials of physical chemistry
P. 204

166                                                  Essentials of Physical Chemistry

              (Add the equations.)


                        d[Br . ]                                                  2
                             ¼ k 1 [Br 2 ]   k 2 [Br . ][H 2 ] þ k 3 [H . ] [Br 2 ] þ k 4 [H . ] [HBr]   k 5 [Br . ]
                    0 ffi
                         dt
                        d[H . ]
                             ¼ k 2 [Br . ][H 2 ]   k 3 [H . ] [Br 2 ]   k 4 [H . ] [HBr]
                         dt
                    0 ffi
            _______________________________________________________________________________

                    0 ffi k 1 [Br 2 ]   k 5 [Br . ] 2

              This example is very good for teaching because it illustrates the method but has an easy solution
            because of a fortuitous substitution. So, substitute the steady-state equation for [H.] into the
            equation for the [Br.] and note the cancelation due to k 2 [Br .][H 2 ] ¼ k 3 [H.][Br 2 ] þ k 4 [H.][HBr].
                                        2
            Thus we find 0 ffi k 1 [Br 2 ]   k 5 [Br.] , which can be solved for
                                                 s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                                                     k 1
                                                        [Br 2 ]:
                                          [Br.] ss ffi
                                                     k 5
              Now substitute the expression for [Br.] ss into the [H.] equation to find

                                       1
                                         2
                                      k 1     1
                                k 2 [H 2 ]  [Br 2 ] 2 ¼ (k 3 [Br 2 ] þ k 4 [HBr])[H . ] ss ,
                                      k 5
            and we can solve for [H.] ss as follows:

                                                 1
                                                   2
                                                k 1           1
                                                    k 2 [H 2 ] [Br 2 ] 2
                                                k 5
                                                               :
                                              (k 3 [Br 2 ] þ k 4 [HBr])
                                       [H . ] ss ¼
            Now we are ready to write the overall rate equation as the appearance of HBr, and we substitute the
            steady-state concentrations we have found.
                            d[HBr]
                                   ¼ k 2 [Br.] ss [H 2 ] þ k 3 [H . ] ss [Br 2 ]   k 4 [H . ] ss [HBr]:
                               dt

            (The next step is amazing!)

                                                2   1                            3
                                                      2
                                                   k 1           1
                                            !
                                     1                 k 2 [H 2 ] [Br 2 ] 2 (k 3 [Br 2 ]   k 4 [HBr])
                   d[HBr]           k 1  2  1   6  k 5                           7
                             k 2 [H 2 ]  [Br 2 ] 2  þ 6                          7:
                                                6
                                                                                 7
                          ¼
                     dt             k 5         4         (k 3 [Br 2 ] þ k 4 [HBr])  5
            Put this expression over a common denominator and the numerator terms in k 4 cancel:
                                                    1
                                                       2
                                                    k 1     3
                                              2k 2 k 3  [Br 2 ] 2 [H 2 ]
                                      d[HBr]        k 5
                                                                :
                                        dt  ¼  (k 3 [Br 2 ] þ k 4 [HBr])
   199   200   201   202   203   204   205   206   207   208   209