Page 69 - Fiber Fracture
P. 69
54 M. Elices and J. Llorca
ACKNOWLEDGEMENTS
Financial support for this work was provided by the Spanish Ministry of Science and
Technology under project MAT2000-1334. The authors thank Gustavo V. Guinea for
useful comments and Jost Miguel Martinez and Rosa Maria Morera for their help with
the illustrations and in typing the manuscript.
REFERENCES
Anderson, T.L. (1995) Fracture Mechanics. CRC Press, Boca Raton, FL
Argon, AS., Im, J. and Safoglu, R. (1975) Cavity formation from inclusions in ductile fracture. Metall.
Trans., 6A 825-837.
Bacon, R. (1960) Growth, structure, and properties of graphite whiskers. J. Appl. Phys., 31(2): 283-290.
Baltussen, J.J.M. and Northolt, M.G. (1996) A model for the tensile curve with yield of a polymer fibre.
Polym. Bull., 36 125-131.
Beremin, EM. (1981) Cavity formation from inclusions in ductile fracture of A508 steel. Merull. Trans.,
12A: 723-73 1.
Bemholc, J. (1 999) Computational materials science. Phys. Today (September), 30-35.
Brenner, S.S. (1956) Tensile strength of whiskers. J. Appl. Phys., 27(12): 1484-1491.
Broberg, K.B. (1999) Cracks and Fracture. Academic Press, New York, NY.
Bunn, C.W. and Garner, E.V. (1947) The crystal structures of two polyamides (‘nylons’). Proc. R. SOC.
London A, 189 39-67.
Chapman, B.M. (1969) A mechanical model for wool and other keratin fibers. Texzile Res. J., 39: 1102-
1109.
Chawla, K.K. (1998) Fibrous Materials. Cambridge University Press, Cambridge.
Cheng, T.T., Jones, I.P., Shatwell, R.A. and Doorbar, P. (1999) The microstructure of sigma 1140+ Sic
fibres. Marel: Sci. Eng., A260(1-2): 139-145.
Chopra, N.G. and Zettl, A. (1998) Measurement of the elastic modulus of a multi-wall BN nanotube. Solid
Stare Commun., 105: 297-300.
Chung, D.D.L. (1994) Carbon Fibers Composites. Butterworth-Heinemann, London.
Coleman, B.D. (1958) On the strength of classical fibers and fiber bundles. J. Mech. Phys. Solids, 7: 60-70.
Collins, W.D. (1962) Some axially symmetric stress distributions in elastic solids containing penny-shaped
cracks, 111. A crack in a circular beam. Proc. Edinburgh Murh. Soc., 13(2): 69-78.
Crist, B., Ratner, M.A., Brower, A.L. and Sabin, J.R. (1979) Ab initio calculations of the deformation of
polyethylene. J. Appl. Phys., 50( IO): 6047-605 1.
Curtin, W.A. (1991) BP internal report, BP/A-262.
Curtin, W.A. (1999) Stochastic damage evolution and failure in fiber-reinforced composites. Adv. Appl.
Mech., 36 163-253.
Doege, E., Kroff, A. and Rotarescu, M.I. (2000) FEM analysis of wire drawing regarding the material
damage. In: P mceedings TPR, Cluj-Napoca, pp. 13 1 - 136.
Elices, M. (1985) Fracture of steels for reinforcing and prestressing concrete. In: Fracture Mechanics of
Concrete, pp. 226-271, G.C. Sih and A. DiTornmaso (Eds.). Martinus Nijhoff, The Hague.
Esposito, E., Carlsson, A.E., Ling, D.D., Ehrenreich, H. and Gelatt, C.D. (1980) First-principle calculations
of the theoretical tensile strength of copper. Philos. Mag. A, 41(2): 251-259.
Faucon, A., Lorriot, T., Martin, E., Auvray, S., Lepetitcorps, Y., Dyos, K. and Shatwell, R.A. (2001) Fracture
behaviour of model silicon carbide filaments. Camp. Sci. Technol., 61(3): 347-354.
Feughelman, M. (1994) A model for the mechanical properties of the a-keratin cortex. Text. Res. J., 64(4):
236-239.
Fitzer, E. and Frohs, W. (1990) Modem carbon fibres from polyacrylonitrile (PAN)-Polyheteroaromatics
with preferred orientation. Chem. Eng. TechnoL, 13: 41-49.