Page 70 - Fiber Fracture
P. 70

MODELS OF FIBRE FRACTURE                                              55

                                                     a
            Fitzer, E.  and  Kiinkele, E (1990) Today’s carbon fibres - new  energy-saving and environment-friendly
              all-round material (a review). High Temp. High Pressures, 22: 239-266.
            Fukuda, H.  and  Chou, T.W.  (1982) A probabilistic theory of  the  strength of  short-fibre composites with
              variable fibre length and orientation. J. Muter: Sci., 17: 1003-101 1.
            Gieske, J.H.  (1968) Ph.D. Thesis, The Pennsylvania State University, University Park, PA.
            Gonziilez, C.  and  Llorca,  J.  (2000) Mechanical  properties of  Sigma  1140+ Sic fibres  prior  and  after
              composite processing. Adv. Comp. Lett., 9: 295-302.
            Grimsditch, M.H.,  Anastassakis, E.  and  Cardona, M.  (1978) Effect of  uniaxial stress on  the  zone-center
              optical phonon of diamond. Phys. Rev. B, 18(2): 901-90.1.
            Guinea, G.V.,  Rojo, F.J. and Elices, M. (2002a) Stress intensity factors for internal circular cracks in fibers
              under tensile loading. Eng. Fruct. Mech. (submitted)
            Guinea, G.V.,  Elices, M. and Rossell6, C.  (2002b) Assessment of  defect size in brittle fibers. En#.  Fruct.
              Mech., 69:  1057-1066.
            Gurson, A.L.  (1977) Continuum theory of  ductile rupture by  void  nucleation and  growth, Part  1.  Yield
              criteria and flow rules for porous ductile media. J. Eng. Mater: Technol., 99: 2-15
            He, T. (1986) An estimate of the strength of polymers. Polymer, 27: 253-255.
            Hearle, J.W.S. (1967) The structural mechanics of fibers. J. Polym. Sci., Pur? C, 20 215-251.
            Hearle, J.W.S.  (2000) A  critical review  of the  structural mechanics of  wool  and hair fibres. Int.  J. Biol.
              Macromol., 27: 123-128.
            Hearle,  J.W.S.  and  Sparrow, J.T.  (1979)  Mechanics  of  the  extension of  cotton  fibers,  11.  Theoretical
              modeling. J. Appl. Polym. Sci., 24:  1857-1874.
            Johnson, R.A.  and Wilson, W.D.  (1972) In:  Interatomic Potentials  and  Simulation of  Lattice  Deffecrs, p.
              301, P.C.  Gehlen, J.R.  Beeler and R.I. Jaffe, (Eds.). Plenum, New York.
             Kanamoto, T., Tsuruta, A., Tanaka, K., Takeda, M. and Porter, R.S.  (1983) Polym. J., 15: 327.
            Kausch, H.H. (1987) Polymer Fracture. Springer, Berlin.
            Kelly, A. and Macmillan, N.H.  (1986) Strong Solids, 3rd. ed. Clarendon Press, Oxford.
            Kobayashi, H.  and  Hiki, Y. (1973) Anharmonicity in noble metals; nonlinear elasticity in  whiskers.  Phys.
              Rev. B, 7: 594-60 1.
            Krishnan, A.,  Dujardin, E.,  Ebbesen, T.W.,  Yianilos, P.N.  and Treacy, M.M.J.  (1998) Young’s modulus of
              single-walled nanotubes. Phys. Rev.  B, 58: 14014-14019.
            Lara-Curzio, E.  and Sternstein, S. (1993) Thermoelastic analysis of  composite CVD Sic fibers.  Comp. Sci.
              Techno[., 46 265-275.
            Levan, A.  and Royer, J. (1993) Part-circular surface cracks in round bars under tension, bending and torsion.
              Int. J. Fruct., 61: 71-99.
            McQueen, R.G. and Marsh, S.P. (1962) Ultimate yield strength of copper. J. Appl. Phys., 33: 654-665.
            Milstein, E and Farber, B. (1980) On the theoretical strength of copper. Philos. Mug. A, 42(1): 19-29.
            Morgan, R.J.,  Pruneda, C.O. and Steele, W.J.  (1983) The relationship between the physical structure and the
              microscopic deformation and failure processes of poly@-phenylene terephthalamide) fibers. J. Polym. Sci
              Pdym. Phys. Ed., 21:  1757-1783.
            Nam,  W.J.  and  Bae,  C.M.  (1995) Void  initiation and  microstructural  changes  during  wire  drawing of
              pearlitic steels. Muter: Sci. Eng., 203: 278-285.
            Niray-Szab6,I. and Ladik, J. (1960) Strength of silica glass. Nature,  188: 226-227.
            Northolt, M.G.  and van der Hout, R.  (1 985) Elastic extension of  an oriented crystalline fibrc. Polymer, 26:
              3 10-3  16.
            Orowan, E. (1949) Rep. Prog. Phys.,  12: 185.
            Panar, M.,  Avakian,  P., Blume, R.C., Gardner, K.H.,  Gierke, T.D.  and Yang, H.H.  (1983) Morphology of
              poly@-Phenylene Terephthalamide)  fibers. J. Polym. Sci. Polym. Phys. Ed., 21:  1955-1969.
            Perepelkin, K.E.  (1 972) Comparative estimate of the theoretical, highest attainable strength and rigidity of
              oriented layer structures. Sov. Muter: Sci., 8(2): 198-202.
            Peterlin, A. (1981) Tensile failure of crystalline polymers. .I. Mucromol. Sci. Phys. B, 19: 401-419.
            Picken, S.J. and Northolt, M.G.  (1999) A simple model for the srrengrh ofhigh-modulusjbers. EPS Meeting,
              Potsdam.
            Polanyi, M. (1921) Z.  Phys., 7: 323
   65   66   67   68   69   70   71   72   73   74   75