Page 246 - Finite Element Analysis with ANSYS Workbench
P. 246

12.2 Finite Volume Method                                 237



                                 result  on  the  left-hand-side  of  the  equation  for  every  cell  is  less
                                 than the specified tolerance.
                                            The Jacobian matrix is determined from,
                                                                    
                                                          =   R  1      
                                                                       R
                                                       A
                                 where
                                                  1               1             1      
                                                   c 2  0       2c 2          2c 2    
                                                                                       
                                                   u 2   n y  u   c x      u   c x  
                                                                    2
                                                                                   2
                                           1 
                                       R
                                          =      c            v 2c          v 2c      
                                                
                                                                   c
                                                                                  c
                                                  v   n            y              y   
                                                 c 2     x       2c 2          2c 2    
                                                             V  c   1    V  c   1  
                                                      V         n             n     
                                                 c 2     t    2c 2    2     2c 2   2  
                                                 V    0      0       0  
                                                  0 n  V     0       0  
                                         
                                          =          n                 
                                                
                                                  0   0    V n  c   0  
                                                 0    0      0     V n  c  
                                                
                                                   c 2    u       v      
                                                                                
                                         R
                                          =      V t      n y      n x     0 
                                                  V  c  c   u   c   v    
                                                      n     x         y         
                                                    
                                                 V  n c   c x   u   c y   v    
                                                
                                            These three matrices contain coefficients which are,
                                                                            c
                                         c   =    n    x  c  x  ;           c   =    n
                                                                       y
                                                                               y
                                                                             (   ) 1
                                                                                     H
                                            c  =     p        ;     p   =         (    ) 
                                                                               
                                                1
                                                    2
                                                                            
                                                                                  1
                                             =    (u  v 2 )    ;              =    
                                                2
                                         V   =    nu  x    n v  y             ;       V   =      u n   n v  x
                                          n
                                                                       t
                                                                                 y
                                 and                       H   =       (      ) 1
   241   242   243   244   245   246   247   248   249   250   251