Page 180 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 180

Modeling and Solution Techniques                                            165



              (1) + 4x(2) ⇒ (2):

                                         () 8   − 2  0  |  2 
                                          1
                                           
                                          2
                                         () 0   14   − 12 |  − 2                     (5.3)
                                           
                                         () 0    − 3  3  |  3  
                                          3
                                                        |
                  14
              (2) +   (3) ⇒ (3)
                   3
                                         () 8   − 2  0  |  2 
                                          1
                                           
                                         () 0   14   − 12 |  − 2                     (5.4)
                                          2
                                           
                                         () 0    0  2  |  12  
                                          3
                                                        |
              Back substitutions (to obtain the solution):
                                   x 3 =  12 2 =  6
                                         /
                                                                 . 15
                                                                   
                                                               
                                   x 2 =− +  12 )/    5 or x  =   5                  (5.5)
                                               x 3 14 =
                                        (
                                         2
                                                                  
                                                                 6  
                                   x 1 = ( 2 +  2 )/
                                             x 2 8 = 115.

            5.4.4  An Example: Iterative Method
            The Gauss–Seidel method (as an example):
                                        Ax = b  (A is symmetric)                       (5.6)

            or

                                         N
                                        ∑  ax j =  b i ,  i = , ,..., N
                                                        12
                                            ij
                                        j=1
              Start with an estimate x  of the solution vector and then iterate using the following:
                                   (0)
                                        i−1         N      
                                  1
                            k ( +1 )  =   b i − ∑  k ( +1 )  − ∑  k ()  ,   foor i = 12,,...,  N  (5.7)
                                            ij
                          x i              a x j       a x j
                                                        ij
                                 a ii                      
                                        j=1        ji =+1  
              In vector form,
                                                                ()
                                                              T
                                                                k
                                    x (k+1 )  =  −1  b [ −  A x (k+1 )  −  A x ]       (5.8)
                                           A D       L       L
            where
              A  = 〈a 〉	is the diagonal matrix of A,
               D
                    ii
              A  is the lower triangular matrix of A,
               L
   175   176   177   178   179   180   181   182   183   184   185