Page 478 - Flexible Robotics in Medicine
P. 478
472 Chapter 20
[4] H. Ren, H. Banerjee, A preface in electromagnetic robotic actuation and sensing in medicine,
Electromagnetic Actuation and Sensing in Medical Robotics, Springer, Singapore, 2018, pp. 1 10.
[5] L. Ionov, Hydrogel-based actuators: possibilities and limitations, Mater. Today 17 (10) (2014) 494 503.
[6] J. Wang, Z. Chen, M. Mauk, K.S. Hong, M. Li, S. Yang, et al., Self-actuated, thermo-responsive hydrogel
valves for lab on a chip, Biomed. Microdevices 7 (4) (2005) 313 322.
[7] M.E. Harmon, M. Tang, C.W. Frank, A microfluidic actuator based on thermoresponsive hydrogels,
Polymer 44 (16) (2003) 4547 4556.
[8] Y. Sun, L. Chen, Y. Jiang, X. Zhang, X. Yao, S. Soh, Soft stimuli-responsive grippers and machines with
high load-to-weight ratios, Mater. Horiz. 6 (1) (2019) 160 168.
[9] M. Sivaperuman Kalairaj, B.S. Yeow, C.M. Lim, H. Ren, Needle-size bending actuators based on
controlled nitinol curvatures and elastic structures, J. Mech. Robot 12 (2020) 031015.
[10] M.S. Kalairaj, B.S. Yeow, C.M. Lim, H. Ren, Nitinol actuated soft structures towards transnasal drug
delivery: a pilot cadaver study, Med. Biol. Eng. Comput. 58 (2020) 611 623.
[11] H. Banerjee, O.Y.W. Aaron, B.S. Yeow, H. Ren, Fabrication and initial cadaveric trials of bi-directional
soft hydrogel robotic benders aiming for biocompatible robot-tissue interactions, in: 2018 3rd
International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2018, pp. 630 635.
[12] M. Mertmann, G. Vergani, Design and application of shape memory actuators, Eur. Phys. J. Spec. Top.
158 (1) (2008) 221 230.
[13] M.S. Kalairaj, H. Banerjee, C.M. Lim, P.Y. Chen, H. Ren, Hydrogel-matrix encapsulated nitinol actuation
with self-cooling mechanism, RSC Adv. 9 (59) (2019) 34244 34255.
[14] M. Coelho, Materials of Interaction (Doctoral dissertation), Massachusetts Institute of Technology), 2008.
[15] G. Kauffman, I. Mayo, Memory metal, ChemMatters 11 (1993) 4.

