Page 314 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 314

1656_C006.fm  Page 294  Monday, May 23, 2005  5:50 PM





                       294                                 Fracture Mechanics: Fundamentals and Applications


                          3. Kinloch, A.J. and Young, R.J., Fracture Behavior of Polymers, Elsevier London, 1983.
                          4. Brostow, W. and Corneliussen, R.D. (eds.), Failure of Plastics. Hanser Publishers, Munich, 1986.
                          5. Hertzberg, R.W. and Manson, J.A., Fatigue of Engineering Plastics. Academic Press, New York, 1980.
                          6. Moore, D.R., Pavan, A., and Williams, J.G. (eds.), Fracture Mechanics Testing Methods for Polymers,
                             Adhesives and Composites. Elsevier, Oxford, 2001.
                          7. Ferry, J.D., Landel, R.F., and  Williams, M.L., “Extensions of the Rouse  Theory of  Viscoelastic
                             Properties to Undiluted Linear Polymers.” Journal of Applied Physics, Vol. 26, 1955, pp. 359–362.
                          8. Larson, F.R. and Miller, J., “A  Time-Temperature Relationship for Rupture and Creep Stresses.”
                             Transactions of the American Society for Mechanical Engineers, Vol. 74, 1952, pp. 765–775.
                          9. Kausch, H.H., Polymer Fracture. Springer-Verlag, Heidelberg, 1978.
                         10. Zhurkov, S.N. and Korsukov, V.E., “Atomic Mechanism of Fracture of Solid Polymers.” Journal of
                             Polymer Science: Polymer Physics Edition, Vol. 12, 1974, pp. 385–398.
                         11. Ward, I.M., Mechanical Properties of Solid Polymers. John Wiley & Sons, New York, 1971.
                         12. Sternstein, S.S. and Ongchin, L., “Yield Criteria for Plastic Deformation of Glassy High Polymers in
                             General Stress Fields.” American Chemical Society, Polymer Preprints, Vol. 10, 1969, pp. 1117–1124.
                         13. Bucknall, C.B., Toughened Plastics. Applied Science Publishers, London, 1977.
                         14. Donald, A.M. and Kramer, E.J., “Effect of Molecular Entanglements on Craze Microstructure in
                             Glassy Polymers.” Journal of Polymer Science: Polymer Physics Edition, Vol. 27, 1982, pp. 899–909.
                         15. Oxborough, R.J. and Bowden, P.B., “A General Critical-Strain Criterion for Crazing in Amorphous
                             Glassy Polymers.” Philosophical Magazine, Vol. 28, 1973, pp. 547–559.
                         16. Argon, A.S., “The Role of Heterogeneities in Fracture.” ASTM STP 1020, American Society for
                             Testing and Materials, Philadelphia, PA, 1989, pp. 127–148.
                         17. Cayard, M., “Fracture Toughness Testing of Polymeric Materials.” Ph.D. Dissertation, Texas A&M
                             University, College Station, TX, 1990.
                         18. Dugdale, D.S., “Yielding in Steel Sheets Containing Slits.” Journal of the Mechanics and Physics of
                             Solids, Vol. 8, 1960, pp. 100–104.
                         19. Barenblatt, G.I., “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture.” Advances in
                             Applied Mechanics, Vol. VII, 1962, pp. 55–129.
                         20. Engineered Materials Handbook, Volume 1: Composites. ASM International, Metals Park, OH, 1987.
                         21. Vinson, J.R. and Sierakowski, R.L., The Behavior of Structures Composed of Composite Materials .
                             Marinus Nijhoff, Dordrecht, The Netherlands, 1987.
                         22. Wang, A.S.D., “An Overview of the Delamination Problem in Structural Composites.” Key Engineering
                             Materials, Vol. 37, 1989, pp. 1–20.
                         23. Hunston, D. and Dehl, R., “The Role of Polymer Toughness in Matrix Dominated Composite Fracture.”
                             Paper EM87-355, Society of Manufacturing Engineers, Deerborn, MI, 1987.
                         24. Bradley, W.L., “Understanding the Translation of Neat Resin Toughness into Delamination Toughness
                             in Composites.” Key Engineering Materials, Vol. 37, 1989, pp. 161–198.
                         25. Jordan,  W.M. and Bradley,  W.L., “Micromechanisms of Fracture in  Toughened Graphite-Epoxy
                             Laminates.” ASTM STP 937, American Society for Testing and Materials, Philadelphia, PA, 1987,
                             pp. 95–114.
                         26. Hibbs, M.F., Tse, M.K., and Bradley, W.L., “Interlaminar Fracture Toughness and Real-Time Fracture
                             Mechanisms of Some Toughened Graphite/Epoxy Composites.” ASTM STP 937, American Society
                             for Testing and Materials, Philadelphia, PA, 1987, pp. 115–130.
                         27. Rosen, B.W., “Mechanics of Composite Strengthening.” Fiber Composite Materials, American Society
                             for Metals, Metals Park, OH, 1965, pp. 37–75.
                         28. Guynn, E.G., Bradley, W.L., and Elber, W., “Micromechanics of Compression Failures in Open Hole
                             Composite Laminates.” ASTM STP 1012, American Society for Testing and Materials, Philadelphia,
                             PA, 1989, pp. 118–136.
                         29. Soutis, C., Fleck, N.A., and Smith, P.A., “Failure Prediction  Technique for Compression Loaded
                             Carbon Fibre-Epoxy Laminate with Open Holes.” Submitted to Journal of Composite Materials, 1990.
                         30. Highsmith, A.L. and Davis, J., “The Effects of Fiber Waviness on the Compressive Response of Fiber-
                             Reinforced Composite Materials.” Progress Report for NASA Research Grant NAG-1-659, NASA
                             Langley Research Center, Hampton, VA, 1990.
                         31. Wang, A.S.D., “A Non-Linear Microbuckling Model Predicting the Compressive Strength of Unidi-
                             rectional Composites.” ASME Paper 78-WA/Aero-1, American Society for Mechanical Engineers,
                             New York, 1978.
   309   310   311   312   313   314   315   316   317   318   319