Page 192 - From Smart Grid to Internet of Energy
P. 192
Power line communication technologies in smart grids Chapter 4 167
[3] I. Develi, Y. Kabalci, A. Basturk, Performance of LDPC coded image transmission over real-
istic PLC channels for smart grid applications, Int. J. Electr. Power Energy Syst. 62 (2014)
549–555.
[4] I. Develi, Y. Kabalci, Highly reliable LDPC coded data transfer in home networks by using
Canete’s PLC channel model. Int. J. Electr. Power Energy Syst. 62 (2014) 912–918, https://
doi.org/10.1016/j.ijepes.2014.05.051.
[5] E. Kabalci, Y. Kabalci, Multi-channel power line communication system design for hybrid
renewables, in: Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth
International Conference on, IEEE, 2013, , pp. 563–568.
[6] E. Kabalci, Y. Kabalci, A measurement and power line communication system design for
renewable smart grids. Meas. Sci. Rev. 13 (2013) 248–252, https://doi.org/10.2478/msr-
2013-0037.
[7] I. Develi, Y. Kabalci, A. Basturk, Artificial bee colony optimization for modelling of indoor
PLC channels: a case study from Turkey. Electr. Power Syst. Res. 127 (2015) 73–79, https://
doi.org/10.1016/j.epsr.2015.05.021.
[8] Y. Kabalci, E. Kabalci, Modeling and analysis of a smart grid monitoring system for renewable
energy sources. Sol. Energy 153 (2017) 262–275, https://doi.org/10.1016/j.solener.2017.05.063.
[9] I. Develi, Y. Kabalci, Analysis of the use of different decoding schemes in LDPC coded OFDM
systems over indoor PLC channels, Elektronika IR Elektrotechnika 20 (2014) 76–79.
[10] Y. Kabalci, I. Develi, E. Kabalci, LDPC coded OFDM systems over broadband indoor power
line channels: a performance analysis, in: Power Engineering, Energy and Electrical Drives
(POWERENG), 2013 Fourth International Conference on, IEEE, 2013, , pp. 1581–1585.
[11] J. Routin, C.E.L. Brown, Improvements in and Relating to Electricity Meters, Patent GB189
724 833(1898).
[12] C.H. Thordarson, Electric Central Station Recoding Mechanism for Meters, U.S. Patent US
784 712(1905).
[13] S. Remseier, H. Spiess, Making power lines sing, ABB Rev. 2 (2006).
[14] M. Schwartz, Carrier-wave telephony over power lines: early history [history of communica-
tions], IEEE Commun. Mag. 47 (2009) 14–18.
[15] D. Dzung, I. Berganza, A. Sendin, Evolution of Powerline Communications for Smart Distri-
bution: From Ripple Control to OFDM. IEEE, 2011, pp. 474–478, https://doi.org/10.1109/
ISPLC.2011.5764444.
[16] K. Dostert, Powerline Communications, Prentice Hall PTR, Upper Saddle River, NJ, 2001.
[17] S. Galli, A. Scaglione, Z. Wang, For the grid and through the grid: the role of power line com-
munications in the smart grid. Proc. IEEE 99 (2011) 998–1027, https://doi.org/10.1109/
JPROC.2011.2109670.
[18] M.M. Rahman, C.S. Hong, S. Lee, J. Lee, M.A. Razzaque, J.H. Kim, Medium access control
for power line communications: an overview of the IEEE 1901 and ITU-T G.hn standards.
IEEE Commun. Mag. 49 (2011) 183–191, https://doi.org/10.1109/MCOM.2011.5784004.
[19] J. Brown, J.Y. Khan, Key performance aspects of an LTE FDD based smart grid communica-
tions network. Comput. Commun. 36 (2013) 551–561, https://doi.org/10.1016/j.
comcom.2012.12.007.
[20] F. Nouvel, P. Tanguy, S. Pillement, H.M. Pham, Experiments of in-vehicle power line com-
munications. in: M. Almeida (Ed.), Advances in Vehicular Networking Technologies, InTech,
2011https://doi.org/10.5772/14258.
[21] I.S. Stievano, F.G. Canavero, V. Dafinescu, Power Line Communication Channel Modeling
for in-Vehicle Applications. IEEE, 2012, pp. 376–379, https://doi.org/10.1109/
I2MTC.2012.6229152.