Page 194 - From Smart Grid to Internet of Energy
P. 194
Power line communication technologies in smart grids Chapter 4 169
[40] D. Sabolic, A. Bazant, R. Malaric, Signal propagation modeling in power-line communication
networks, IEEE Trans. Power Delivery 20 (2005) 2429–2436.
[41] T. Sartenaer, P. Delogne, Deterministic modeling of the (shielded) outdoor power line channel
based on the multiconductor transmission line equations, IEEE J. Sel. Areas Commun.
24 (2006) 1277–1291.
[42] F.J. Canete, J.A. Cortes, L. Diez, J.T. Entrambasaguas, A channel model proposal for indoor
power line communications, IEEE Commun. Mag. 49 (2011) 166–174.
[43] C. Hensen, W. Schulz, Time dependence of the channel characteristics of low voltage power-
lines and its effects on hardware implementation, AEU Int. J. Electron. Commun. 54 (2000)
23–32.
[44] H. Philipps, Modelling of powerline communication channels, in: Proc. 3rd Int’l. Symp.
Power-Line Commun. and its Applications, 1999, , pp. 14–21.
[45] M. Zimmermann, K. Dostert, A multipath model for the powerline channel, IEEE Trans. Com-
mun. 50 (2002) 553–559.
[46] M. Tlich, A. Zeddam, F. Moulin, F. Gauthier, Indoor power-line communications channel
characterization up to 100 MHz—part I: one-parameter deterministic model, IEEE Trans.
Power Delivery 23 (2008) 1392–1401.
[47] M. Tlich, A. Zeddam, F. Moulin, F. Gauthier, Indoor power-line communications channel
characterization up to 100 MHz—part II: time-frequency analysis, IEEE Trans. Power Deliv-
ery 23 (2008) 1402–1409.
[48] A. Rubinstein, F. Rachidi, M. Rubinstein, EMC guidelines, in: The OPERA Consortium, IST
Integrated Project Deliverable D9v1. 1, IST Integrated Project No. 026920, 2008.
[49] A. Vukicevic, Electromagnetic Compatibility of Power Line Communication Systems, Ph.D.
thesisEcole Polytechnique Federale de Lausanne (EPFL), Lausanne, 2008.
[50] B. Varadarajan, I.H. Kim, A. Dabak, D. Rieken, G. Gregg, Empirical measurements of the low-
frequency power-line communications channel in rural North America, in: Power Line Com-
munications and Its Applications (ISPLC), 2011 IEEE International Symposium on, IEEE,
2011, , pp. 463–467.
[51] K. Razazian, A. Kamalizad, M. Umari, Q. Qu, V. Loginov, M. Navid, G3-PLC field trials in
US distribution grid: initial results and requirements, in: Power Line Communications and Its
Applications (ISPLC), 2011 IEEE International Symposium on, IEEE, 2011, , pp. 153–158.
[52] K. Razazian, J. Yazdani, Utilizing beyond CENELEC standards for smart grid technology,
in: Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International
Conference and Exhibition on, IEEE, 2011, , pp. 1–6.
[53] M. Gotz, M. Rapp, K. Dostert, Power line channel characteristics and their effect on commu-
nication system design, IEEE Commun. Mag. 42 (2004) 78–86.
[54] D. Anastasiadou, T. Antonakopoulos, Multipath characterization of indoor power-line net-
works, IEEE Trans. Power Delivery 20 (2005) 90–99.
[55] X. Ding, J. Meng, Characterization and modeling of indoor power-line communication channels,
in: Proceedings of the 2nd Canadian Solar Buildings Conference, Calgary, 2007, , pp. 1–7.
[56] X. Ding, J. Meng, Channel estimation and simulation of an indoor power-line network via a
recursive time-domain solution, IEEE Trans. Power Delivery 24 (2009) 144.
[57] P. Meier, M. Bittner, H. Widmer, J. Bermudez, A. Vukicevic, M. Rubinstein, F. Rachidi,
M. Babic, J.S. Miravalles, Pathloss as a function of frequency, distance and network topology
for various LV and MV European powerline networks, in: The OPERA Consortium, Project
Deliverable, EC/IST FP6 Project, 2005D5v0.9.
[58] A. Sendin, I. Pen ˜a, P. Angueira, Strategies for power line communications smart metering net-
work deployment, Energies 7 (2014) 2377–2420.