Page 193 - From Smart Grid to Internet of Energy
P. 193

168   From smart grid to internet of energy


            [22] V. Degardin, I. Junqua, M. Lienard, P. Degauque, S. Bertuol, Theoretical approach to the fea-
                sibility of power-line communication in aircrafts. IEEE Trans. Veh. Technol. 62 (2013)
                1362–1366, https://doi.org/10.1109/TVT.2012.2228245.
            [23] S. Galli, T. Banwell, D. Waring, Power Line Based LAN on Board the NASA Space Shuttle.
                IEEE, 2004, pp. 970–974, https://doi.org/10.1109/VETECS.2004.1388975.
            [24] S. Barmada, L. Bellanti, M. Raugi, M. Tucci, Analysis of power-line communication channels
                in ships. IEEE Trans. Veh. Technol. 59 (2010) 3161–3170, https://doi.org/10.1109/
                TVT.2010.2052474.
            [25] SAE International, Broadband PLC Communication for Plug-in Electric Vehicles, SAE Inter-
                national, 2014. https://www.sae.org/standards/content/j2931/4_201410/.
            [26] ISO, Road Vehicles—Vehicle to Grid Communication Interface—Part 3: Physical and Data
                Link Layer Requirements, https://www.iso.org/standard/59675.html, 2015.
            [27] P. Karols, K. Dostert, G. Griepentrog, S. Huettinger, Mass transit power traction networks as
                communication channels. IEEE J. Sel. Areas Commun. 24 (2006) 1339–1350, https://doi.org/
                10.1109/JSAC.2006.874410.
            [28] L. Lampe, L.T. Berger, Power line communications. in: Academic Press Library in Mobile and
                Wireless Communications, Elsevier, 2016, , pp. 621–659, https://doi.org/10.1016/B978-0-12-
                398281-0.00016-8.
            [29] C. EN50065, Signalling on Low-Voltage Electrical Installations in the Frequency Range 3 kHz
                to 148,5 kHz—Part 1: General Requirements, Frequency Bands and Electromagnetic Distur-
                bances, European Committee for Electrotechnical Standardization (CENELEC), Bruxelles,
                Belgium. Standard EN 50065-1:2011(2011).
            [30] J.A. Cortes, J.M. Idiago, Smart metering systems based on power line communications.
                in: E. Kabalci, Y. Kabalci (Eds.), Smart Grids and Their Communication Systems, Springer
                Nature, Singapore, 2019, , pp. 1–43, https://doi.org/10.1007/978-981-13-1768-2_4.
            [31] FCC, Title 47 of the Code of Federal Regulations (CFR), Tech. Rep. 47 CFR §15, U.S. Federal
                Communications Commission (FCC),. (n.d.). https://goo.gl/cN4JMC.
            [32] I.O. for Standartization, Information Technology-Home Electronic System (HES)
                Architecture-Part 3-5: Media and Media Dependent Layers Powerline for Network Based Con-
                trol of HES Class 1, International Standard ISO/IEC 14543-3-5, ISO, 2007.
            [33] A.N.S.I.I. Association (ANSI/EIA), Control Network Power Line (PL) Channel Specification,
                ANSI/CEA-709.2-A, ANSI September(2006).
            [34] I.O. for Standartization, Interconnection of Information Technology Equipment-Control Net-
                work Protocol-Part 3: Power Line Channel Specification, International Standard ISO/IEC
                14908–3, ISO. Revision Vol. 11(2011).
            [35] Y. Kabalci, Communication methods for smart buildings and nearly zero-energy buildings.
                in: N. Bizon, N. Mahdavi Tabatabaei, F. Blaabjerg, E. Kurt (Eds.), Energy Harvesting and
                Energy Efficiency, Springer International Publishing, Cham, 2017, , pp. 459–489, https://
                doi.org/10.1007/978-3-319-49875-1_16.
            [36] D. Clark, Powerline communications: finally ready for prime time? IEEE Internet Comput.
                2 (1998) 10–11.
            [37] H. Meng, S. Chen, Y. Guan, C. Law, P. So, E. Gunawan, T. Lie, Modeling of transfer char-
                acteristics for the broadband power line communication channel, IEEE Trans. Power Delivery
                19 (2004) 1057–1064.
            [38] S. Galli, T. Banwell, A novel approach to the modeling of the indoor power line channel-part
                II: transfer function and its properties, IEEE Trans. Power Delivery 20 (2005) 1869–1878.
            [39] S. Barmada, A. Musolino, M. Raugi, Innovative model for time-varying power line commu-
                nication channel response evaluation, IEEE J. Sel. Areas Commun. 24 (2006) 1317–1326.
   188   189   190   191   192   193   194   195   196   197   198