Page 341 - From Smart Grid to Internet of Energy
P. 341
304 From smart grid to internet of energy
[5] IEEE Standards Association—Working Group Site & Liaison Index. Standard for an Archi-
tectural Framework for the Internet of Things IEEE P2413, n.d. http://grouper.ieee.org/groups/
2413/ (Accessed 6 September 2017).
[6] D. Minoli, K. Sohraby, B. Occhiogrosso, IoT considerations, requirements, and architectures
for smart buildings—energy optimization and next generation building management systems.
IEEE Internet Things J. (2017) 269–283, https://doi.org/10.1109/JIOT.2017.2647881.
[7] C. Arcadius Tokognon, B. Gao, G.Y. Tian, Y. Yan, Structural health monitoring framework
based on internet of things: a survey. IEEE Internet Things J. 4 (2017) 619–635, https://doi.org/
10.1109/JIOT.2017.2664072.
[8] M.A. Razzaque, M. Milojevic-Jevric, A. Palade, S. Clarke, Middleware for internet of things: a
survey. IEEE Internet Things J. 3 (2016) 70–95, https://doi.org/10.1109/JIOT.2015.
2498900.
[9] M. Rana, Architecture of the internet of energy network: an application to smart grid commu-
nications. IEEE Access 5 (2017) 4704–4710, https://doi.org/10.1109/ACCESS.2017.
2683503.
[10] A. Keyhani, A. Chatterjee, Automatic generation control structure for smart power grids, IEEE
Trans. Smart Grid 3 (2012) 1310–1316.
[11] H. Lu, L. Zhan, Y. Liu, W. Gao, A microgrid monitoring system over mobile platforms. IEEE
Trans. Smart Grid (2016) 749–758, https://doi.org/10.1109/TSG.2015.2510974.
[12] P. Garcia, P. Arboleya, B. Mohamed, A.A.C. Vega, Implementation of a hybrid distributed/
centralized real-time monitoring system for a DC/AC microgrid with energy storage capabil-
ities. IEEE Trans. Ind. Inf. 12 (2016) 1900–1909, https://doi.org/10.1109/TII.2016.2574999.
[13] M. Firouzi, G.B. Gharehpetian, B. Mozafari, Power-flow control and short-circuit current lim-
itation of wind farms using unified interphase power controller. IEEE Trans. Power Delivery
32 (2017) 62–71, https://doi.org/10.1109/TPWRD.2016.2585578.
[14] S. Howell, Y. Rezgui, J.-L. Hippolyte, B. Jayan, H. Li, Towards the next generation of smart
grids: semantic and holonic multi-agent management of distributed energy resources. Renew.
Sust. Energ. Rev. 77 (2017) 193–214, https://doi.org/10.1016/j.rser.2017.03.107.
[15] A. Cataliotti, V. Cosentino, D. Di Cara, P. Russotto, E. Telaretti, G. Tine, An innovative mea-
surement approach for load flow analysis in MV smart grids. IEEE Trans. Smart Grid 7 (2016)
889–896, https://doi.org/10.1109/TSG.2015.2430891.
[16] N. Moreira, E. Molina, J. La ´zaro, E. Jacob, A. Astarloa, Cyber-security in substation automa-
tion systems. Renew. Sust. Energ. Rev. 54 (2016) 1552–1562, https://doi.org/10.1016/j.
rser.2015.10.124.
[17] S.S. Mousavi-Seyedi, F. Aminifar, S. Afsharnia, Application of WAMS and SCADA data to
online modeling of series-compensated transmission lines. IEEE Trans. Smart Grid 8 (2017)
1968–1976, https://doi.org/10.1109/TSG.2015.2513378.
[18] M. Liserre, G. Buticchi, M. Andresen, G. De Carne, L.F. Costa, Z.-X. Zou, The smart trans-
former: impact on the electric grid and technology challenges. IEEE Ind. Electron. Mag.
10 (2016) 46–58, https://doi.org/10.1109/MIE.2016.2551418.
[19] L. Ferreira Costa, G. De Carne, G. Buticchi, M. Liserre, The smart transformer: a solid-state
transformer tailored to provide ancillary services to the distribution grid. IEEE Power Electr.
Mag. 4 (2017) 56–67, https://doi.org/10.1109/MPEL.2017.2692381.
[20] E. Inga, S. Cespedes, R. Hincapie, C.A. Cardenas, Scalable route map for advanced metering
infrastructure based on optimal routing of wireless heterogeneous networks. IEEE Wirel.
Commun. 24 (2017) 26–33, https://doi.org/10.1109/MWC.2017.1600255.
[21] E. Avelar, L. Marques, D. dos Passos, R. Macedo, K. Dias, M. Nogueira, Interoperability issues
on heterogeneous wireless communication for smart cities. Comput. Commun. 58 (2015)
4–15, https://doi.org/10.1016/j.comcom.2014.07.005.