Page 26 - Fundamentals of Computational Geoscience Numerical Methods and Algorithms
P. 26

12                         2  Simulating Steady-State Natural Convective Problems

                                    ∂Ψ
                                       T
                    T  e          ∗       e          ∗    T  e
                 ϕϕ V dA +     ϕK        P dA +   ϕK Raϕ T e 2 dA = 0,   (2.23)
                                  y                  y
                A             A     ∂y  ∗        A
                    T              T              2  T             2  T
                  ∂ϕ             ∂ϕ              ∂ ϕ              ∂ ϕ
                                                       e
                       e
                                      e
                                                                        e
              ϕu  ∗   T dA+   ϕv  ∗  T dA−   ϕ λ ∗ ex  T dA−  ϕ λ ∗ ey  T dA = 0.
             A    ∂x  ∗     A    ∂y ∗       A     ∂x ∗2      A    ∂y ∗2
                                                                          (2.24)
              Using the Green-Gauss theorem and the technique of integration by parts, the
            terms involving the second derivatives in Eq. (2.24) can be rewritten as
                     ∂ ϕ    e          ∂ϕ    ∂ϕ    e
                      2  T                      T
                                                              ∗
                 ϕ λ ∗ ex  ∗2  T dA =−    λ ∗ ex  T dA +   ϕq n x dS = 0,  (2.25)
                                                             x
               A     ∂x              A ∂x  ∗  ∂x  ∗       S
                      ∂ ϕ   e          ∂ϕ     ∂ϕ   e
                       2  T                     T
                                                             ∗
                 ϕ λ ∗ ey  ∗2  T dA =−    λ ∗ ey  T dA +   ϕq n y dS = 0,  (2.26)
                                                             y
               A      ∂y             A ∂y  ∗  ∂y  ∗       S
                  ∗
            where q and q are the dimensionless heat fluxes on the element boundary of a unit
                        ∗
                  x     y
            normal vector, n; A and S are the area and boundary length of the element.
              Note that Eqs. (2.21), (2.22), (2.23) and (2.24) can be expressed in a matrix form
            as follows:
                         ⎡   e        e     e  ⎤ ⎧  e  ⎫  ⎧  e  ⎫
                           M     0 −B x  −A x  ⎪ U ⎪     ⎪ F ⎪
                                                     ⎪
                             0 M e  −B e    e  ⎪   e ⎬   ⎪   x ⎪
                                               ⎨
                                                         ⎨
                                                             e ⎬
                                      y                      y
                         ⎢               −A ⎥     V        F
                         ⎢             e    y ⎥    e   =     e  ,        (2.27)
                             0   0   E
                         ⎣                  0 ⎦
                                               ⎪ T ⎪     ⎪ G ⎪
                                                     ⎪
                                               ⎪
                                                         ⎪
                                                              ⎪
                            C e  C e  0     0  ⎩  P e ⎭  ⎩  0  ⎭
                             x   y
                   e
                         e
            where U and V are the nodal dimensionless velocity vectors of the element in the
                                             e
                                       e
            x and y directions respectively; T and P are the nodal dimensionless temperature
                                               e
                                                                       e
                                            e
                                                         e
                                                   e
                                                                e
                                                             e
                                                      e
            and pressure vectors of the element; A , A , B , B C , C , E and M are the
                                            x  y   x  y  x   y
                                            e
                                                  e
                                         e
            property matrices of the element; F , F and G are the dimensionless nodal load
                                         x  y
            vectors due to the dimensionless stress and heat flux on the boundary of the element.
            These matrices and vectors can be derived and expressed as follows:
                                                                         T
                    ∂ϕ                                                ∂ϕ
              e          ∗  T        e        ∗    T          e
            A =         K Ψ dA,     B =    ϕK Raϕ e 1 dA,    C =     Ψ    dA,
              x
                                                               x
                         x
                                              x
                                     x
                   A ∂x  ∗                A                        A   ∂x ∗
                                                                         (2.28)
                    ∂ϕ                                                ∂ϕ
                                                                         T
              e             T        e             T          e
                         ∗
                                              ∗
            A =        K Ψ dA,      B =    ϕK Raϕ e 2 dA,    C =    Ψ     dA,
              y          y           y        y                y
                   A ∂y ∗                 A                        A   ∂y ∗
                                                                         (2.29)
                           ∂ϕ                 ∂ϕ    ∂ϕ
                              T
               e  ∗       ∗             e         ∗             e      ∗
             D (u ) =   ϕu     dA,    L =        λ     dA,    F =    σ ϕdS,
               x              ∗         x       ∗  ex  ∗        x      x
                       A    ∂x              A ∂x    ∂x              S
                                                                         (2.30)
   21   22   23   24   25   26   27   28   29   30   31