Page 403 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 403

Mechanics of Magnetic Fusion Reactors  Chapter | 12    381



                                    q   = I(r  ′ × B+ r ′ × ).B                                                  q~e=I(r~’×B+r’×B~).
                                     e
                Since

                                 r ′ = ′ u,  Bu       ′                                                             r′=u′,B~=u⋅∇B  and  r′=t,
                                          ×⋅∇B and r= t,
             we obtain
                                                t
                               q 1  = q e  = I [ ′ ×u  B + × (u ⋅∇B  ] ) .                                          q1=qe=Iu′×B+t×(u⋅∇B).
                Let us introduce unit vector n = e . Since t’ = kn and n’ = −kt (curvature
                                            r
                 −1
             k = R ), we obtain
                              u ′ = ′ + u(k  t ′ − ku )t  + u n  t ) .n                                             u′=u′zk+(u′t−kun)t+u′n+kutn.
                                                 ( ′ + ku
                                  u
                                             n
                                   z
                Since the field gradient
                                                                t
                                         k
                         B
                       ∇ = e   ∂ + ke ϕ ∂ +∂ z ) B r()e ϕ =− ′ B r()nt  + kB ,                                      ∇B=er∂r+ke∂+k∂zB(r)e=−B′(r
                                                                n
                                      ϕ
                            ( r
                                r
                                                                                                                                         )nt+kBtn,
             the equation for the linear load takes the form
                                     q 1  = IBu nu k).                                                              q =IB(u′zn−u′nk).
                                           (
                                             z
                                             ′ − ′ n
                                                                                                                     1
                In reality, there are quite a lot of elastic supports. Therefore, their distributed
             reaction can be written as
                                               u
                                         q 2  =−c .                                                                 q =−cu.
                                                                                                                     2
                By summing the two effective distributed forces, we obtain the total load on
             the coil q = q  + q .
                        1
                           2
                The initial equations can be written by component as
                                     = 0                     = 0,
                         Q t ′ − kQ n  − cu t  Q n ′ − kQ t  + IBu z ′ − cu t
                                      = 0           = 0,
                         Q z ′ − IBu n ′ − cu z  M t ′ − kM n
                         M n ′ + kM t  − Q z  = 0  M z ′ + Q n  = 0,
                                     θ )               θ )
                                  t
                                                    n
                         M t  = a t  θ ( ′ − k n  M n  = a n  θ ( ′ + k t
                                                  = 0
                         M z  = a z θ′ z   u t ′ − ku n
                                =               θ .
                         u n ′ + ku t  θ z  u z ′ =− n                                                                       Q′t−kQn−cut=0Q′n−kQt+IB
                                                                                                                             u′z−cut=0,Q′z−IBu′n−cuz=0
                The general solution of this system of 12 equations is a linear combination of
                                                                                                                             Mt’−kMn=0,Mn’+kMt−Qz=0-
             exponents of the form  = e ,u u  λs  …,Q t  = Q t  e . By applying transformations to                   Mz’+Qn=0,Mt=atθ′t−kθnMn=anθ′n+kθt
                                                 λs
                                                                                                                       u=ueλs,…,Qt=Qteλs
             the amplitudes, we get the following linear system of four algebraic equations:                        Mz=azθ′zut’−kun=0un’+kut=θzuz’=−θn.

                               2
                        λ ( a  3 ( +k  λ k −1  − IB λ u  − kQ  = 0,
                       z            ) ) + ut  z    t

                           −1
                         2
                                                      2
                                         2 2
                                    4
                      IB λ ku t  + (a n λ − a t λ k  +  ) c u z  − k λ (a t  + a n  θ ) t  = 0,

                                2
                          2
                      ( ka z λ ( +  λ k −1 ) −  ) cut +  λQ t  = 0,
                            k

                                           2
                        2
                      k λ (a t  + au  +  λ (  2 a t  − k a n  θ ) t  = 0,                                                azλ k+λ k−1+ut−IBλuz−kQt=0,IB
                                                                                                                               2
                                                                                                                           3
                               ) z
                              n
                                                                                                                                          2 2
                                                                                                                                     4
                                                                                                                           2
                                                                                                                                                    2
                                                                                                                          λ k−1ut+anλ −atλ k +cuz−kλ at+
                                                                                                                                       2
                                                                                                                                   2
                                                                                                                         anθt=0,kazλ k+λ k−1−cut+λQt=0,
                                                                                                                                                2
                                                                                                                                           2
                                                                                                                                 2
                                                                                                                               kλ at+anuz+λ at−k anθt=0.
   398   399   400   401   402   403   404   405   406   407   408