Page 421 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 421

Structural and Functional Materials  Chapter | 13    399


                                    −3
             involving an around 7 × 10 % helium generation at 10 dpa; for those two
             effects to arise, steel temperatures higher than 330°C and 550°C, respectively,
             are necessary.
                A high-strength ХМ-19–grade steel is used for some of the reactor’s struc-
             tural components. It has a high plasticity (∼40% at 0.7 dpa) in a temperature
             range of 200–300°C and a yield strength that is twice as high as that featured by
             the 316L(N) IG–grade steel [16]. The XM-19–grade maximum tolerable radia-
             tion load is around 1 dpa.
                For ITER bolt fixtures, subject to extreme stiffness requirements, a high-
             nickel Cu–Ni–Al alloy, characterised by a very low creep rate, is envisaged.
             Its yield strength before irradiation is ∼600 MPa, and its maximum tolerable
             radiation load is around 1 dpa at 200°C.
                To sum it up, the following physical processes are of critical importance for
             the MFR design from the radiation materials science prospective:

             l  for beryllium: swelling and helium-induced embrittlement;
             l  for tungsten: radiation-induced embrittlement in the temperatures range of
                300–700°C;
             l  for copper alloys: radiation-induced embrittlement at temperatures close to
                200°C.


             REFERENCES

             [1]  V.A. Glukhikh,  V.A. Gorynin,  V.F.  Vinokurov, et  al.  Проблемы выбора и исследования
                конструкционных материалов для  термоядерных  установок  и реакторов с  магнитным
                удержанием плазмы (The problems of selection and studies of structural materials for mag-
                netic plasma confinement fusion facilities and reactors), Конструкционные материалы для
                реакторов термоядерного синтеза (Structural Materials for Fusion Reactors), Nauka, Mos-
                cow,  (1988) pp. 8–25 (in Russian).
             [2]  M.N. Beskorovaynyj, B.A. Kalin, P.A. Platonov, et al. Конструкционные материалы ядерных
                реакторов (Structural Materials for Nuclear Reactors), Energoatomizdat, Moscow,  (1995)
                p. 704 (in Russian).
             [3]  S.J. Zinkle, S.A. Fabritsiev, Copper alloys for high heat flux application, J Nucl Fusion 5 (Sup-
                plement) (1994) 163191 Atomic and Plasma-Materials Interaction Data for Fusion.
             [4]  V.A. Belyakov, S.A. Fabritsiev, I.V. Mazul, et al. Status of international collaborative efforts on
                selected ITER materials, J. Nucl. Mater.  (2000) 283–287 pp. 962–967.
             [5]  V.A.  Tzykanov,  V.K. Shamardin,  V.A. Povstyanko, et  al.  К  вопросу об использовании
                реакторов деления для получения данных о радиационном повреждении материалов для
                ТЯР (On the use of fission reactors for gathering data on radiation-induced damages to fusion
                reactor materials), in: Proceedings of the All-Russian Conference “Radiation Effects on Fusion
                Reactor Materials”, Leningrad, Russian, 1990, pp. 67–86 Part 1.
             [6]  M.D. Abramovich, S.N. Votinov, A.G. Yoltukhovskiy, Радиационное материаловедение АЭС
                (NPP Radioactive Materials Science), Energoatomizdat, Moscow,  (1984) p. 134 (in Russian).
             [7]  V.F. Zelenskiy, I.M. Neklyudov, T.P. Cherniayeva,  Радиационные  дефекты и  распухание
                металлов (Radiation Defects and Metal Swelling), Naukova Dumka, Kiev,  (1988) p. 294 (in
                Russian).
   416   417   418   419   420   421   422   423   424   425   426