Page 421 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 421
Structural and Functional Materials Chapter | 13 399
−3
involving an around 7 × 10 % helium generation at 10 dpa; for those two
effects to arise, steel temperatures higher than 330°C and 550°C, respectively,
are necessary.
A high-strength ХМ-19–grade steel is used for some of the reactor’s struc-
tural components. It has a high plasticity (∼40% at 0.7 dpa) in a temperature
range of 200–300°C and a yield strength that is twice as high as that featured by
the 316L(N) IG–grade steel [16]. The XM-19–grade maximum tolerable radia-
tion load is around 1 dpa.
For ITER bolt fixtures, subject to extreme stiffness requirements, a high-
nickel Cu–Ni–Al alloy, characterised by a very low creep rate, is envisaged.
Its yield strength before irradiation is ∼600 MPa, and its maximum tolerable
radiation load is around 1 dpa at 200°C.
To sum it up, the following physical processes are of critical importance for
the MFR design from the radiation materials science prospective:
l for beryllium: swelling and helium-induced embrittlement;
l for tungsten: radiation-induced embrittlement in the temperatures range of
300–700°C;
l for copper alloys: radiation-induced embrittlement at temperatures close to
200°C.
REFERENCES
[1] V.A. Glukhikh, V.A. Gorynin, V.F. Vinokurov, et al. Проблемы выбора и исследования
конструкционных материалов для термоядерных установок и реакторов с магнитным
удержанием плазмы (The problems of selection and studies of structural materials for mag-
netic plasma confinement fusion facilities and reactors), Конструкционные материалы для
реакторов термоядерного синтеза (Structural Materials for Fusion Reactors), Nauka, Mos-
cow, (1988) pp. 8–25 (in Russian).
[2] M.N. Beskorovaynyj, B.A. Kalin, P.A. Platonov, et al. Конструкционные материалы ядерных
реакторов (Structural Materials for Nuclear Reactors), Energoatomizdat, Moscow, (1995)
p. 704 (in Russian).
[3] S.J. Zinkle, S.A. Fabritsiev, Copper alloys for high heat flux application, J Nucl Fusion 5 (Sup-
plement) (1994) 163191 Atomic and Plasma-Materials Interaction Data for Fusion.
[4] V.A. Belyakov, S.A. Fabritsiev, I.V. Mazul, et al. Status of international collaborative efforts on
selected ITER materials, J. Nucl. Mater. (2000) 283–287 pp. 962–967.
[5] V.A. Tzykanov, V.K. Shamardin, V.A. Povstyanko, et al. К вопросу об использовании
реакторов деления для получения данных о радиационном повреждении материалов для
ТЯР (On the use of fission reactors for gathering data on radiation-induced damages to fusion
reactor materials), in: Proceedings of the All-Russian Conference “Radiation Effects on Fusion
Reactor Materials”, Leningrad, Russian, 1990, pp. 67–86 Part 1.
[6] M.D. Abramovich, S.N. Votinov, A.G. Yoltukhovskiy, Радиационное материаловедение АЭС
(NPP Radioactive Materials Science), Energoatomizdat, Moscow, (1984) p. 134 (in Russian).
[7] V.F. Zelenskiy, I.M. Neklyudov, T.P. Cherniayeva, Радиационные дефекты и распухание
металлов (Radiation Defects and Metal Swelling), Naukova Dumka, Kiev, (1988) p. 294 (in
Russian).