Page 55 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 55
REFERENCES Chapter | 2 37
[18] C. Gormezano, A.C.C. Sips, T.C. Luce, et al., Chapter 6: Steady state operation, Progress in
the ITER Physics Basis, Nucl. Fusion 47 (6) (2007) S285 (special issue).
[19] A.C.C. Sips, et al., Advanced scenarios for ITER operation, Plasma Phys. Controlled Fusion
47 (2005) A19.
[20] A.B. Mineev, V.A. Belyakov, Yu.V. Gribov, et al., Study of ITER first plasma initiation us-
ing a 3D electromagnetic model, in: Proc. 25th IAEA FEC, 2014, St. Petersburg, Oct. 13–18,
2014. PPC/P3-20.
[21] T.S. Pedersen, et al., Key results from the first plasma operation phase and outlook for future
performance in Wendelstein 7-X, Physics of Plasmas 24 (2017) 055503.
[22] A. Komori, H. Yamada, S. Imagawa, O. Kaneko, K. Kawahata, K. Mutoh, et al., Goal and
achievements of large helical device project, Fusion Sci. Technol. 58 (1) (2010) 1–11.
[23] V. Bykov, J. Fellinger, F. Schauer, et al., Specific features of Wendelstein 7-X structural analy-
sis, IEEE Trans. Plasma Sci. 42 (3) (2014) 690–697.
[24] F. Schauer, K. Egorov, V. Bykov, HELIAS 5-B magnet system structure and maintenance
concept, Fusion Eng. Des. 88 (9-10) (2013) 1619–1622.
[25] NIFS, LHD, Available from http://www.lhd.nifs.ac.jp/en/lhd/LHD_info/homepage.html.
[26] Y. Takeiri, Prospects towards steady-state helical fusion reactor based on progress of LHD
project entering the deuterium experiment phase, to be published in, IEEE Transactions on
Plasma Physics (2018).
[27] J. Miyazawa, et al., Physics analyses on the core plasma properties in the helical fusion
DEMO reactor FFHR-d1, Nucl. Fusion 54 (2014) 043010.
[28] J.E. Menard, L. Bromberg, T. Brown, et al., Prospects for pilot plants based on the tokamak,
spherical tokamak and stellarator, Nucl. Fusion 51 (2011) 103014.