Page 310 - Fundamentals of Probability and Statistics for Engineers
P. 310

Parameter Estimation                                            293
                                    ^
             The mean and variance of    are

                        Z               n
                   ^
                 Ef gˆ      xf ^   …x†dx ˆ   ;                          …9:114†
                         0            n ‡ 1

                        Z         n     2        "      n      #
                   ^
                                                                 2
               varf gˆ       x          f ^   …x†dx ˆ    2        :     …9:115†
                         0      n ‡ 1              …n ‡ 1† …n ‡ 2†
                      ^
           We see that    is biased but consistent.
                                                           2
             Example 9.17. Let us now determine the MLE of   ˆ  r in Example 9.13. To




           carry out this estimation procedure, it is now necessary to determine the pdf of
           X given  by Equation  (9.77). Applying techniques developed  in  Chapter  5, we
           can show that X is characterized by the Rice distribution with pdf given by (see
           Benedict and Soong, 1967)
                            8        1=2         2
                              x       x         x ‡
                            >
                            <   I 0      exp          ;  for x   0;
                        2
                f X …x;  ;   †ˆ    2    2        2  2                   …9:116†
                            >
                              0;  elsewhere;
                            :
           where I 0 is the modified zeroth-order Bessel function of the first kind.
             Given a sample of size n from population X, the likelihood function takes the
           form
                                        n
                                        Y          2
                                    L ˆ   f X …x j ;  ;   †:            …9:117†
                                        jˆ1
                             2 ^
           The MLEs of    and   ,    and   ,  satisfy the likelihood equations
                                      2 b
                               q ln L  ˆ 0;  and  q ln L  ˆ 0;          …9:118†
                                 q  ^            q  b 2

           which, upon simplifying, can be written as
                                       n
                                   1  X  x j I 1 …y j †
                                                  1 ˆ 0;                …9:119†
                                 n  ^ 1=2  I 0 …y j †
                                      jˆ1
           and

                                                    !
                                            n
                                       1 1  X   2
                                                   ^
                                   b 2
                                    ˆ         x     ;                   …9:120†
                                                j
                                       2 n
                                            jˆ1



                                                                            TLFeBOOK
   305   306   307   308   309   310   311   312   313   314   315