Page 238 - Fundamentals of Reservoir Engineering
P. 238

OILWELL TESTING                                    176

                     particular case of a brief initial well test in a new reservoir the amount of fluids
                     withdrawn during the production phase will be infinitesimal and the extrapolated
                               *
                     pressure p  will be equal to the initial pressure p i which is also the average pressure p.
                     This corresponds to the so-called infinite reservoir case for which p D (t D) in equ. (7.37)
                     may be evaluated under transient conditions, equ. (7.23), and hence the last two terms
                                                                                                  *
                     in the former equation will cancel each other out. Apart from this special case p  cannot
                     be thought of as having any clearly defined physical meaning but is merely a
                     mathematical device used in calculating the average reservoir pressure. Thus
                     evaluating equ. (7.37) for infinite closed in time gives
                           2kh   ( p − p * )  =  p (t ) −  1  ln 4t D                               (7.39)
                            π
                            qµ     i          D  D    2   γ

                     and subtracting this equation from the material balance for the bounded drainage
                     volume, equ. (7.38), and multiplying throughout by 2, gives

                           4kh   ( p −  p =  4 π t  +  ln  4t D  −  2p  ()                          (7.40)
                            π
                                   *
                                        )
                                                                     t
                            qµ                  DA         γ       D  D
                            *
                     Since p  is obtained from the extrapolation of the observed pressure trend on the
                     Horner buildup plot, then p can be calculated once the right hand side of equ. (7.40)
                     has been correctly evaluated. This, of course, gets back to the old problem of how can
                     p D (t D), the dimensionless pressure, be determined for any value of t D, which is the
                     dimensionless flowing time prior to the survey? Matthews, Brons and Hazebroek
                     derived p D (t D) functions for a variety of bounded geometrical shapes and for wells
                     asymmetrically situated with respect to the boundary using the so-called "method of
                     images" with which the reader who has studied electrical potential field theory will
                     already be familiar. The method is illustrated for a 2 : 1 rectangular bounded reservoir
                     in fig. 7.10.






                                                                    a
                                                                     j













                     Fig. 7.10  Part of the infinite network of image wells required to simulate the no-flow
                                condition across the boundary of a 2 : 1 rectangular part of a reservoir in
                                which the real well is centrally located

                     Very briefly, in order to maintain a strict no-flow condition at the outer boundary
                     requires the placement of an infinite grid of virtual or image wells, a part of such an
   233   234   235   236   237   238   239   240   241   242   243