Page 207 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 207

CONVECTION HEAT TRANSFER
                           As before, the diffusion term can be integrated after applying Green’s lemma. The
                        diffusion matrix for the elements inside the domain is
                                                ∂[N]  ∂[N]   ∂[N]   ∂[N]
                                                    T            T                            199
                                     [K 1e ] =       k     +      k       d
                                             
   ∂x 1  ∂x 1   ∂x 2  ∂x 2
                                                 b   b i b j b i b k   c   c i c j c i c k
                                                 2                   2          
                                             k    i               k     i
                                          =     b j b i  b 2 j  b j b k    +   c j c i  c 2 j  c j c k   (7.115)
                                            4A              2     4A             2
                                                b k b i b k b j  b    c k c i c k c j  c
                                                            k                    k
                           The stabilization matrix is
                                                                        T
                                                    T
                                        t       ∂[N] ∂[N]           ∂[N] ∂[N]
                              [K 2e ] = u 1   u 1         d
 +    u 2         d
                                        2   
    ∂x 1  ∂x 1     
    ∂x 1  ∂x 2
                                                      T
                                                                          T
                                           t       ∂[N] ∂[N]          ∂[N] ∂[N]
                                     + u 2      u 1         d
 +    u 2         d
                                          2    
    ∂x 2  ∂x 1    
    ∂x 2  ∂x 2
                                                2
                                                                                       
                                              u 1 b + u 2 b i c i  u 1 b i b j + u 2 b i c j u 1 b i b k + u 2 b i c k
                                      u 1  t    i              2
                                   =        u 1 b j b i + u 2 b j c i  u 1 b + u 2 b j c j  u 1 b j b k + u 2 b j c k  
                                                               j
                                     4A 2                                     2
                                             u 1 b k b i + u 2 b k c i u 1 b k b j + u 2 b k c j  u 1 b + u 2 b k c k
                                                                              k
                                                u 1 c i b i + u 2 c  u 1 c i b j + u 2 c i c j u 1 c i b k + u 2 c i c k
                                                         2                              
                                        u 2  t            i              2
                                     +         u 1 c j b i + u 2 c j c i  u 1 c j b j + u 2 c j  u 1 c j b k + u 2 c j c k   (7.116)
                                        4A 2                                            3
                                               u 1 c k b i + u 2 c k c i u 1 c k b j + u 2 c k c j  u 1 c k b k + u 2 c k
                           The forcing vectors along the boundary edges are (assuming ij as the boundary edge)
                                         
                                        N i

                                             ∂N i ∂N j ∂N k    n
                            [f 1e ] = k   N j             {φ} d	n 1
                                     	   0    ∂x 1  ∂x 1  ∂x 1
                                            
                                          N i

                                                ∂N i ∂N j ∂N k
                                   + k    N j                {φ} d	n 2
                                       	        ∂x 2  ∂x 2  ∂x 2
                                           0
                                                        
                                   	    b i φ i + b j φ j + b k φ k
                                 =    k b i φ i + b j φ j + b k φ k n 1
                                                         
                                       
                                   4A
                                                0
                                                          
                                      	    c i φ i + c j φ j + c k φ k
                                   +    k c i φ i + c j φ j + c k φ k n 2                  (7.117)
                                         
                                                           
                                     4A
                                                  0
                                               
                                              N i
                                      t            ∂N i ∂N j ∂N k    n

                            [f 2e ] = u 1  u 1 N j               {φ}
                                             
                                     2   	     0    ∂x 2  ∂x 2  ∂x 2
                                                  
                                                 N i
                                        t             ∂N i ∂N j ∂N k    n

                                   + u 1     u 2 N j                {φ} d	n 1
                                               
                                        2  	     0    ∂x 2  ∂x 2  ∂x 2
   202   203   204   205   206   207   208   209   210   211   212