Page 205 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 205

CONVECTION HEAT TRANSFER
                        obtain
                                          n+1
                                        φ
                                                        ∂φ
                                                                 ∂φ
                                             t − φ n  =−u 1  ∂x 1  n  − u 2  ∂x 2 n           197
                                                        ∂     ∂φ    n  ∂     ∂φ    n
                                                    +       k      +      k
                                                       ∂x 1  ∂x 1    ∂x 1  ∂x 2
                                                          t ∂      ∂φ     ∂φ    n
                                                    + u 1       u 1   + u 2
                                                         2 ∂x 1   ∂x 1    ∂x 2
                                                                              n

                                                          t ∂      ∂φ     ∂φ

                                                    + u 2       u 1   + u 2                (7.106)
                                                         2 ∂x 2   ∂x 1    ∂x 2
                           The standard Galerkin approximation can now be employed for solving the above
                        equation. Assuming a linear variation of φ within an element as indicated in Figure 7.12,
                        we can express the variation of φ as
                                             φ = N i φ 1 + N j φ j + N k φ k = [N]{φ}      (7.107)
                           Employing the Galerkin weighting, we obtain
                                      φ n+1  − φ n             ∂φ  n             ∂φ  n
                                                           T
                                                                             T
                                  [N] T        d
 =−     [N] u 1   d
 −    [N] u 2   d
                                
         t            
       ∂x 1      
       ∂x 2
                                                              ∂     ∂φ
                                                                         n
                                                            T
                                                     +   [N]      k       d
                                                        
    ∂x 1   ∂x 1
                                                              ∂     ∂φ    n
                                                     +   [N] T           d
                                                        
    ∂x 2  ∂x 2
                                                                                     n


                                                        t        T  ∂     ∂φ     ∂φ

                                                     +    u 1  [N]     u 1   + u 2     d
                                                        2    
     ∂x 1  ∂x 1    ∂x 2
                                                                                     n

                                                        t        T  ∂     ∂φ     ∂φ


                                                     +    u 2  [N]     u 1   + u 2     d
 (7.108)
                                                        2    
     ∂x 2  ∂x 1    ∂x 2
                                                            k




                                             i



                                                                           j
                                      Figure 7.12 Two-dimensional linear triangular element
   200   201   202   203   204   205   206   207   208   209   210