Page 201 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 201

193
                        CONVECTION HEAT TRANSFER
                        where [C e ] is the elemental convection matrix, that is,

                                                    [C e ] =  u 1 −11                       (7.93)
                                                           2  −11
                           The values of the derivatives of the shape functions are substituted in order to derive
                        the above matrix. The diffusion term within the domain 
 is integrated as
                                                               
                                                            ∂N i
                                    ∂[N]  ∂[N]      n       ∂x 1    ∂N i ∂N j  φ i
                                        T                                          n
                                         k     d
{φ} =           k                d
                                  
 ∂x 1   ∂x 1          
    ∂N j    ∂x 1  ∂x 1  φ j
                                                            ∂x 1
                                                                             
                                                             ∂N i ∂N i  ∂N i ∂N j
                                                                                     n


                                                              ∂x 1 ∂x 1  ∂x 1 ∂x 1    φ i
                                                     =    k                         d
                                                         
    ∂N j ∂N i ∂N j ∂N j    φ j
                                                             ∂x 1 ∂x 1  ∂x 1 ∂x 1
                                                                       n


                                                        k   1 −1   φ i
                                                     =
                                                        l −1    1  φ j
                                                               n
                                                     = [K 1e ]{φ}                           (7.94)
                        where [K 1e ] is the elemental diffusion matrix, that is,
                                                           k     1 −1
                                                    [K 1e ] =                               (7.95)
                                                           l −1    1
                           The characteristic Galerkin term within the domain 
 is integrated as
                                                                    
                                                                  ∂N i
                                         T
                                 t     ∂[N] ∂[N]           t       ∂x 1   ∂N i ∂N j      φ i    n

                                                  n
                             u 2 1             {φ} d
 = u 2 1                         d
                                2  
 ∂x 1  ∂x 1            2  
    ∂N j    ∂x 1  ∂x 1  φ j
                                                                  ∂x 1
                                                                                 
                                                                  ∂N i ∂N i  ∂N i ∂N j
                                                           t       ∂x 1 ∂x 1  ∂x 1 ∂x 1       φ i
                                                         2
                                                      = u 1                            d
                                                           2  
    ∂N j ∂N i ∂N j ∂N j    φ j
                                                                  ∂x 1 ∂x 1  ∂x 1 ∂x 1
                                                                             n

                                                           t 1   1 −1    φ i

                                                         2
                                                      = u 1  2 l −1  1   φ j
                                                               n
                                                      = [K 2e ]{φ}                          (7.96)
                        where [K 2e ] is a stabilization matrix,
                                                            t 1     1 −1
                                                 [K 2e ] = u 2 1                            (7.97)
                                                           2 l −1    1
   196   197   198   199   200   201   202   203   204   205   206